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1. Motivation
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Collaborative learning has attracted significant attention lately through popular frameworks such
as federated learning (FL) [1]

Focus: Decentralized collaborative online personalized mean estimation [2]

New: Adding privacy requirement

Goal: Faster convergence than a fully local approach while providing privacy

2. Problem Statement

M independent agents

Each agent a wants to estimate the mean of its

sample X
(1)
a , X

(2)
a , . . . ∈ Xa ⊂ R

X
(i)
a ∼ Da with bounded support Xa with an

(unknown) mean µa and known/unknown standard
deviation σa <∞
For some users a and b, µa = µb, and a and b belong
to the same class

At each time step t, agent a receives X
(t)
a , updates

its sample mean X̄
(t)
a , and also chooses another

agent b to query
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Tb→a =
∑κb→a

i=1 wi

(
X̄

(ti)
b + Z

(ti)
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)

Agent b then sends its current sample mean to a, but privatized: X̄
(t)
b + Z

(t)
b→a

A particular construction of the noise Z
(t)
b→a is a private release mechanism

Agent a computes Tb→a =
∑κb→a

i=1 wi

(
X̄

(ti)
b + Z

(ti)
b→a

)
(estimate of agent b’s mean)

Decision rule of agent a: Agent b has the same distribution mean as me (χ
(t)
a (b; θt) = 1) if∣∣∣X̄ (t)

a − Tb→a

∣∣∣ < Φ−1t,ν

(
1− θt

2

)√σ̂2
a

t + V̂ar[Tb→a] (hypothesis testing; student t-distribution)

4. Contributions [3]

Two (online) differential privacy (DP) mechanisms inspired by the ones in [4] are proposed

A theoretical convergence analysis showing convergence

The best scheme performs comparably to ideal performance where all data is public
Compared to [3]: σa is assumed unknown and estimated for all agents a

Var-Est-1: A privatized partial sample variance is released
Var-Est-2: Variance is estimated from the already released privatized sample means

5. Differential Privacy Mechanisms

Privatized version of X̄
(t)
b using so-called p-sums:

X̄
(t)
b + Z

(t)
b→a =

X
(1)
b + · · · +X

(t)
b

t
+ Z

(t)
b→a

=

∑τ1
i=1X

(i)
b + Z

(1:τ1)
b→a +

∑τ2
i=τ1+1

X
(i)
b + Z

(τ1+1:τ2)
b→a + · · · +∑t

i=τκ−1+1
X

(i)
b + Z

(τκ−1+1:t)
b→a

t
PM-I: Split [1 : tκ] into [1 : t1], [t1 + 1 : t2], . . . , [tκ−1 + 1 : tκ]

PM-II: Join the subsums of PM-I into larger subsums according to the binary representation of κ

3. Our Approach

Algorithm 1: Private-ColME
Input: agent a

Output: µ
(tmax)
a

1∀ b ∈ [M ] \ {a} : Tb→a← 0, κb→a← 0

2C(0)a ← [M ]
3 for t = 1, 2, . . . , tmax do
4 // Receive

5 Receive sample X
(t)
a ∼ Da

6 X̄
(t)
a ← X̄

(t−1)
a × t−1

t +X
(t)
a × 1

t
7 // Query

8 b← choose agent
(
C(t−1)a , [M ]

)

9 κb→a← κb→a + 1

10 Tb→a←
∑κb→a

i=1 wi

(
X̄

(ti)
b + Z

(ti)
b→a

)

11 Update σ̂2
a, σ̂

2
b , and V̂ar[Tb→a]

12 // Estimate

13 C(t)a ← {b ∈ [M ] : χ
(t)
a (b; θt) = 1}

14 µ
(t)
a ← α

(t)
a→aX̄

(t)
a +

∑
b∈C(t)a \{a}α

(t)
b→aTb→a

15 return µ
(tmax)
a

6. Results
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200 and 30 agents, resp., and three classes

Uniform data with class-dependent means

DP: ϵ = 1 with δ = 10−6 (Gaussian mechanism)

Decision rule: θt = 0.05/ln(t+1)
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