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1. Motivation
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m Collaborative learning has attracted significant attention lately through popular frameworks such
as federated learning (FL) |1

m Focus: Decentralized collaborative online personalized mean estimation |2
m New: Adding privacy requirement
m Goal: Faster convergence than a fully local approach while providing privacy

2. Problem Statement

m M independent agents plxé”,...,xé’f)

m BFach agent a wants to estimate the mean of its s
sample Xél), XC(LQ), .e X, CR L e

o Xc(f) ~ D, with bounded support X, with an e .o . G - "
(unknown) mean g, and known/unknown standard \ S Rowdobi EXb e
deviation o, < 00 Agent Agent b

m For some users a and b, 11, = pp, and a and b belong X, + 272,

to the same class

()

m At each time step t, agent a receives X, ’, updates

(1

its sample mean X
agent b to query

and also chooses another

)

m Agent b then sends its current sample mean to a, but privatized: X [St) - Zéia
(2)

m A particular construction of the noise 7, . 1s a prwvate release mechanism
= Agent a computes Ty, = Y 207" w; <)_( éti) + Zé:“) a) (estimate of agent b’s mean)
(t)

m Decision rule of agent a: Agent b has the same distribution mean as me (x4’ (b;6;) = 1) if

)_(C@ — Tpa| < O Vl( — %) \/ %2 + \Er[T b—a| (hypothesis testing; student ¢-distribution)

4. Contributions [3]

m Two (online) differential privacy (DP) mechanisms inspired by the ones in [4] are proposed

m A theoretical convergence analysis showing convergence

m The best scheme performs comparably to ideal performance where all data is public

m Compared to [3]: o, is assumed unknown and estimated for all agents a
m Var-Est-1: A privatized partial sample variance is released
m Var-Est-2: Variance is estimated from the already released privatized sample means

5. Differential Privacy Mechanisms

(1)

Privatized version of X, using so-called p-sums:
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t
m PM-I: Split [1:t] into [1: 6], [t1+ 1 o], ... [ter + 11 4

m PM-II: Join the subsums of PM-I into larger subsums according to the binary representation of &
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3. Our Approach

Algorithm 1: Private-ColME

Input: agent a

15 return (i,

Output: Nﬁfmaﬂ

1Vbe M\ {a}l: Ty o < 0,Kpq < 0
201 M|

sfort=1,2,..., t,. do

4 // Receive

5 Recelve sample Xc(f) ~ D,

o X X x4 xl x 3
7 // Query
8 b < choose agent (C(?f 2 [M])

9 Kpsq < Rp—a T 1
10 Ty, < Z’%T“ W; ()_( (i) - Zéma)

11 | Update o2 ab, and Var[TgH@]
12 // Estlmate
13 C (b e [M]: L (b:6,) = 1)

14 ,ng < @gtLaXét) + ZbECét)\{CL} @[SZGT[)%CL
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0. Results
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200 and 30 agents, resp., and three classes
Uniform data with class-dependent means
DP: € = 1 with § = 107" (Gaussian mechanism)

Decision rule: 6; = 0-05/in(t+1)
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