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Abstract—Mimicking the idea of the generalized Hamming
weight of linear codes, we introduce a new lattice invariant,
the generalized theta series. Applications range from identifying
stable lattices to the lattice isomorphism problem. Moreover,
we provide counterexamples for the secrecy gain conjecture on
isodual lattices, which claims that the ratio of the theta series
of an isodual (and more generally, formally unimodular) lattice
by the theta series of the integer lattice Zn is minimized at a
(unique) symmetry point.

I. INTRODUCTION

In coding theory, the generalized Hamming weight [1]
serves as a structural parameter that provides additional in-
formation beyond the minimum Hamming weight of a linear
code. It has applications in the type II wiretap channel, where
an eavesdropper taps s out of n bits of a sent message and is
supposed to get the least information from it. It can also be
used as a code invariant to guarantee two linear codes are not
equivalent or assist in finding an equivalence if it exists.

The theta series characterizes the (Euclidean) distance spec-
trum of an n-dimensional lattice Λ. A lattice property is said
to be audible if it can be determined by the lattice theta series,
as, for example, the theta series of the dual lattice Λ∗ is
related to the theta series of Λ via the Jacobi’s formula [2,
p. 103]. Conway and Fung [3] asked the following question:
Can you hear the shape of a lattice? In other words, in which
dimensions there can be two non-isomorphic lattices with the
same theta series? It was demonstrated that one can hear
the shape of n = 2 [3, pp. 44–45] and n = 3-dimensional
lattices [4], but cannot for n ≥ 4 [3, pp. 42–44].

This paper contributes to the solution of this problem by
providing a refined notion of audible given by a new lattice
geometric invariant, the generalized theta series. It is inspired
by the generalized Hamming weight of linear codes and
connects two other lattice invariants, the determinant and the
theta series. In more mathematical terms, the r-th generalized
theta series of a lattice Λ counts the number of r-dimensional
sublattices Λ′ ⊆ Λ that have the same volume.

The first application of the generalized theta series is in
finding stable lattices, i.e., lattices such that all of its sublat-
tices have a volume larger than or equal to one. Stable lattices
have recently gained a lot of interest in connection with the
reverse Minkowski theorem [5], [6]. Given the theta series ratio
∆Λ(τ) ≜ ΘΛ(iτ)/ΘZn (iτ) of a lattice Λ, a key result in this
theory is that ∆Λ(τ) ≤ 1 for all stable lattices Λ, when τ

is either very small or very large [5]. However, whether this
inequality holds for all τ > 0 remains an open problem.

In the context of wiretap channel communication, Belfiore
and Solé [7] have conjectured that the global minimum of
the theta series ratio of unimodular lattices is achieved at
τ = 1. This result is not completely demonstrated, but it
is known to be true for extremal unimodular lattices [8],
several unimodular lattices and even-dimensional Construction
A unimodular lattices from binary self-dual codes in small
dimensions [9], [10], many unimodular lattices constructed
via direct-sum [11], and Construction A and A4 unimodular
lattices satisfying a numerical sufficient condition [12], [13].
The conjecture was further extended to isodual [14] and
formally unimodular lattices [12].

Using techniques from the generalized theta series, we
demonstrate that there exist isodual lattices such that ∆Λ(τ) >
1, and moreover, such that τ = 1 is not the global minimum
of the theta series ratio ∆Λ(τ), invalidating the conjectures
[14, Conj. 1] and [12, Conj. 37], since isodual lattices are also
formally unimodular.

Moreover, the contributions of this paper are:
i) An original lattice invariant, the generalized theta series

of a lattice Λ, which can assist in hearing the shape
of a lattice, that is, distinguishing between two non-
isomorphic lattices that share the same theta series, pro-
vided their generalized theta series can be determined.
Moreover, we define the r-th generalized Euclidean
norms of a lattice, which reflects the concept of the
generalized Hamming weight of a linear code.

ii) A connection between the generalized theta series and
the r-th densest sublattice problem [15], which asks to
find the r linearly independent vectors in a lattice Λ that
yields to the smallest volume.

iii) We verify the stability of lattices via the generalized theta
series.

iv) We show that conjectures concerning secure communica-
tion in a Gaussian wiretap channel do not hold for isodual
lattices, as well as for formally unimodular lattices, by
providing explicit counterexamples.

II. PRELIMINARIES

A. Notation

We denote by N, Z, and R the set of naturals, integers, and
reals, respectively. [i : j] ≜ {i, i + 1, . . . , j} for i, j ∈ Z,



i ≤ j. Vectors are row vectors and boldfaced, e.g., x. The all-
zero vector is denoted by 0. Matrices and sets are represented
by capital sans serif letters and calligraphic uppercase letters,
respectively, e.g., X and X . An identity matrix n×n is denoted
by In. The inner product of two vectors is denoted by ⟨a, b⟩.
The natural embedding ϕq : Zn

q → Zn is such that ϕq(x) maps
each element x ∈ Zq to the corresponding integer.

B. Lattices and Linear Codes

A lattice Λ ⊂ Rn is a discrete additive subgroup of Rn. A
(full rank) lattice can also be seen as Λ = {λ = uLn×n : u ∈
Zn}, where the n rows of the generator matrix L form a lattice
basis in Rn. If a lattice Λ has generator matrix L, then the
lattice Λ⋆ ⊂ Rn generated by

(
L−1

)T
is called the dual lattice

of Λ. The volume of a lattice Λ is vol(Λ) = |det(L)|. A
sublattice Λ′ of a lattice Λ is a lattice such that Λ′ ⊆ Λ.

Next, we define the theta series of a lattice Λ.
Definition 1 (Theta series): Let Λ be a lattice. Its theta series

is given by

ΘΛ(z) =
∑
λ∈Λ

q∥λ∥2

=
∑
λ∈Λ

eiπz∥λ∥2

,

where q ≜ eiπz and Im{z} > 0.
Here, we will consider z to be purely imaginary. Then, the

theta series of Λ reduces to

ΘΛ(iτ) =
∑
λ∈Λ

e−πτ∥λ∥2

.

A lattice Λ is said to be integral if the inner product of
any two lattice vectors is an integer or equivalently if and
only if Λ ⊆ Λ⋆. An integral lattice such that Λ = Λ⋆ is a
unimodular lattice. A lattice that can be obtained from its dual
by a rotation or reflection is called isodual. We say that a lattice
Λ is formally unimodular if and only if ΘΛ(z) = ΘΛ⋆(z). It
is worth mentioning that unimodular, isodual, and formally
unimodular lattices all have volume equal to 1. A lattice Λ
is said to be stable if vol(Λ) = 1 and vol(Λ′) ≥ 1 for all
sublattice Λ′ ⊆ Λ. Unimodular lattices are stable [16, Cor.,
p. 407].

Analogous to the theta series of a lattice, a binary [n, k]
linear code1 C ⊆ Fn

2 has a weight enumerator

WC (x, y) =
∑
c∈C

xn−wH(c)ywH(c)

=

n∑
w=0

Aw(C )xn−wyw,

where Aw(C ) ≜ |{c ∈ C : wH(c) = w}|, w ∈ [0 : n].
Next, we define the generalized Hamming weight of linear

codes, a quantity that characterizes the weights of subcodes of
a given linear code C .

1A binary [n, k] code C is a k-dimensional linear subspace of Fn
2 . In

general, codes can be defined over a Galois field Fq .

Definition 2 (Generalized Hamming weight [1]): The r-th
generalized Hamming weight of an [n, k] code C is the size
of the smallest support of an r-dimensional subcode of C , i.e.,

dr(C ) = min{w(Cr) : Cr is an [n, r] subcode of C },

considering w(C ) =
∣∣{i ∈ [1 : n] : ∃ c = (c1, . . . , cn) ∈

C s.t. ci ̸= 0}
∣∣, and r ∈ [1 : k]. We define d(C ) ≜

{d1(C ), . . . , dk(C )} as the weight hierarchy of a code C and
dr(C ) denotes the r-th generalized Hamming weight of C .

We remark that, in the literature, most results on generalized
Hamming weights are established for binary [n, k] codes.
However, there also exist several results concerning linear
codes over Fq . See, for example, [17].

The generalized Hamming weight is monotonic.
Theorem 1: [1, Thm. 1] For an [n, k] linear code C with

k > 0, we have that

1 ≤ d1(C ) < d2(C ) < · · · < dk(C ) ≤ n.

Example 1: Consider two non-isometric [6, 3] binary codes
C1 and C2 in [3, pp. 40–42], with respective generator matrices
GC1 = (I3 B1) and GC2 = (I3 B2), where

B1 =

1 0 0
0 1 0
0 0 1

 and B2 =

0 1 0
1 1 1
0 1 0

.

The weight hierarchies of C1 and C2 are

d(C1) = {2, 4, 6} and d(C2) = {2, 3, 6}.

The distinct weight hierarchies indicate that the two codes
are indeed non-isometric. However, they have the same weight
enumerator

WC1
(x, y) = WC2

(x, y) = x6 + 3x4y2 + 3x2y4 + y6,

and thus, are said to be isospectral. ♢
Lattices can be constructed from linear codes through Con-

struction A [2], [18]. A Zq linear code C of length n is an
additive subgroup of Zn

q .
Definition 3 (Construction A [18, p. 31]): Let C be a Zq

linear code, then ΛAq
(C ) ≜ 1√

q (ϕq(C ) + qZn) is a lattice.

C. Conjectures on the Theta Series

Characterizing the theta series of a general lattice is a
hard task. It has applications in many fields, being used to
bound the success probability of eavesdropping a message
in communication channels [7], or in theoretical computer
science, where it is believed that the theta series of the integer
lattice Zn maximizes the theta series of stable lattices [19].

We start by defining a particular quotient of the theta series.
Definition 4 (Theta series ratio [20]): Let Λ be a lattice

with volume vol(Λ) = 1. The theta series ratio of Λ is defined
by

∆Λ(τ) ≜
ΘΛ(iτ)

ΘZn(iτ)
, τ ≜ −iz > 0.

Regev and Stephen-Davidowitz conjectured that ∆Λ(τ) ≤ 1
for all stable lattices [19].
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Fig. 1. Theta series ratios as a function of τ > 0 for several isodual lattices
that both satisfy Conjectures 1 and 2. Observe that ∆Λ(τ) ≤ 1 for all τ > 0
and argminτ>0 ∆Λ(τ) = 1.

Conjecture 1 (Upper bound on the theta series ratio for
stable lattices): For all stable lattices Λ ⊂ Rn and for all
τ > 0, it holds that

ΘΛ(iτ) ≤ ΘZn(iτ) or equivalently ∆Λ(τ) ≤ 1.

In the context of Gaussian wiretap channel communication,
the theta series ratio is also of fundamental importance since it
upper bounds the error probability of an eavesdropper guessing
a sent message once lattice coset encoding is performed [7].
The original conjecture was stated for unimodular lattices.

Conjecture 2 (Global minimum of the theta series ratio for
unimodular lattices): The theta series ratio of a unimodular
lattice Λ achieves its global minimum at τ = 1, i.e.,

argmin
τ>0

∆Λ(τ) = 1.

Later on, the same conjecture was extended to isodual [14,
Conj. 1] and formally unimodular lattices [12, Conj. 37]. Given
that formally unimodular lattices are also isodual, we will
focus on isodual lattices from this point onward. Nevertheless,
the same conclusions apply to formally unimodular lattices.

Fig. 1 illustrates several typical isodual lattices that simul-
taneously satisfy Conjectures 1 and 2.

The argument for the minimization of the theta series ratio,
relies on the concept of weak secrecy gain, which is simply
the theta series ratio evaluated at a symmetry point τ0, i.e.,
∆Λ(τ0), where τ0 is such that for all τ > 0,

∆Λ(τ0 · τ) = ∆Λ(τ0/τ).

In [14, Conj. 1], the claim is that, given an isodual lattice
Λ, the global minimum of its theta series ratio is achieved at
the symmetry point τ0 = 1. We will refer to this formulation
as the secrecy gain conjecture for isodual lattices.

III. GENERALIZED THETA SERIES

Inspired by the concept of generalized Hamming weight,
we define an equivalent notion for lattices.
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Fig. 2. Geometric interpretation of the generalized theta series.

Definition 5 (Generalized Theta Series): Consider a lattice
Λ ⊂ Rn. Its r-th generalized theta series is

Θ
(r)
Λ (z) =

∑
{ai}r

i=1⊆Λ:

rank(A)=r,

qdet(AA
T), (1)

where AT = [aT
1, . . . ,a

T
r], r ∈ [1 : n], q ≜ eiπz and Im{z} > 0.

Observe that, the definition of generalized theta series does
not take into account the ordering. In other words, the lattice
generated by any permutation of the vectors {a1, . . . ,ar} is
considered just once in the exponent of (1).

Due to the connection with the r-dimensional densest
sublattice problem (r-DSP) [15] to be further discussed in
Section V-A, it is known that the minimum determinant
is uniquely determined and therefore, Definition 5 is well-
defined. Moreover, the following holds.

Remark 1:

1) ΘΛ(z) = 1 + Θ
(1)
Λ (z).

2) The set {a1, . . . ,ar} ⊆ Λ consisting of r linearly
independent lattices vectors generates an r-dimensional
sublattice Λ′ ⊆ Λ ⊂ Rn. Its volume is vol(Λ′) =√

det(AAT) where AT = [aT
1, . . . ,a

T
r], r ∈ [1 : n].

Example 2: Consider the hexagonal lattice A2, with basis
{(1, 0), (1/2,

√
3/2)}. From Definition 5, we get that

Θ
(1)
A2

(z) = 6q + 6q3 + 6q4 + 12q7 + 6q9 + · · ·

Θ
(2)
A2

(z) = 12q
3/4 + 24q

27/4 + 12q12 + 24q
75/4 + · · ·

Geometrically, given a term Nmqm in the generalized theta
series Θ

(r)
Λ (z), the exponent m corresponds to the volume

of the fundamental region of a lattice generated by any
combination of r linearly independent vectors; the integer N
indicates how many set of r linearly independent vectors are
there yielding the same volume. The blue crosses in Fig. 2
illustrate the six vectors with squared norm one in the first
term of Θ(1)

A2
(z), while the green fundamental regions (with the



same area) are generated by two sets of vectors that contribute
to the term 24q27/4 in Θ

(2)
A2

(z). ♢
Apart from enumerating the r-dimensional volumes for Λ,

we adopt the concept of r-th generalized Hamming weights
of codes [1], [21] and define the corresponding generalized
Euclidean norm for a lattice Λ.

Definition 6 (r-th Generalized Euclidean Norm/r-
Dimensional Minimum Sublattice Volume): The r-th
generalized Euclidean norms are the minimum exponents
defined in (1) for all r ∈ [1 : n] and,

νr(Λ) = min{det(AAT) : {ai}ri=1 ⊆ Λ and rank(A) = r}.

Moreover, the norm hierarchy is defined as ν(Λ) =
{νr(Λ): r ∈ [1 : n]}.

Remark 2: Let λ1 be the length of the shortest nonzero
vector of a lattice Λ. It follows from Definition 6 that we have
ν1(Λ) = λ2

1 of the lattice Λ and νn(Λ) = vol(Λ)
2.

IV. PROPERTIES OF THE
r-TH GENERALIZED EUCLIDEAN NORM

We now present a property related to the r-th generalized
Euclidean norm for equivalent lattices.

Proposition 1: Consider two equivalent lattices Λ,Λ ⊆ Rn,
i.e., LΛ = αLΛQ for some α ̸= 0 and an orthogonal matrix
Q ∈ Rn×n. Then, νr(Λ) = α2rνr(Λ) for all r ∈ [1 : n].

Proof: Consider {ai}ri=1 ⊆ Λ, A
T
= [aT

1, . . . ,a
T
r], r ∈

[1 : n], and rank(A) = r. Observe that for a fixed i and
ai ∈ Λ, we have ai = uiLΛ = αuiLΛQ, where ui ∈ Zn.
Therefore, the Gram matrix AA

T
[2, p. 101] will have elements

of the form

⟨ai,aj⟩ = ⟨αuiLΛQ, αujLΛQ⟩ = α2⟨uiLΛ,ujLΛ⟩
= α2⟨ai,aj⟩,

for i, j ∈ [1 : r], ai,aj ∈ Λ. Since AA
T

and AAT are r × r
matrices for a fixed rank r, we can conclude that

det(AA
T
) = α2r det(AAT).

This completes the proof.
Example 3: Consider the D4 lattice [2, p. 9] generated by

the following generator matrix

LD4 =


2 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

,

and another lattice D4 with generator matrix LD4
= 1√

2
LD4Q,

which is equivalent to D4 and

Q =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


is an orthogonal matrix. As a result, we numerically compute
the norm hierarchy ν(D4) = (2, 3, 4, 4) based on Definition 6,
and Proposition 1 indicates that ν(D4) = (1, 3/4, 1/2, 1/4). ♢

V. APPLICATIONS

A. Stability of Lattices

The generalized theta series naturally can identify whether
a lattice is stable, which we address next.

A generalization of the the shortest vector problem (SVP)
in a lattice Λ is the r-DSP [15].

Definition 7 (r-dimensional Densest Sublattice Problem (r-
DSP)): Consider a lattice Λ ⊆ Rn. Find r linearly independent
lattice vectors {a1,a2, . . . ,ar} ⊆ Λ such that it generates a
sublattice achieving the smallest possible volume det(AAT),
where AT = [aT

1, . . . ,a
T
r], r ∈ [1 : n].

Note that the first term of the generalized theta series
Θ

(r)
Λ (z) resolves the r-DSP problem.
To the best of our knowledge, the most efficient algorithm to

compute the r-DSP has running time at most rO(rn), which is
presented in [15]. Its main theoretical finding is the realization
that the r-DSP solution either contains the lattice shortest
vectors or one can efficiently generate a short list of O(r)n

lattice vectors that contains the solution to r-DSP.
Lemma 1 ([15, Lemma 3.1]): Consider an n-dimensional

lattice Λ. A minimum-volume sublattice either contains all
lattice vectors of length λ1, or it contains a set of r linearly
independent vectors, each of length at most rλ1.

To verify whether a lattice is stable, one must ensure that
for any Λ′ ⊆ Λ, vol(Λ′) ≥ 1. Thus, Lemma 1 can be used to
verify the stability of a lattice computationally. In the following
examples, we provide three concrete evidence demonstrating
the fact that Construction A lattices obtained from codes over
Zq are not necessarily stable. We begin with an example based
on the binary Construction A lattice, building upon Example 1.

Example 4: Consider the corresponding Construction A
lattices ΛA2

(C1) and ΛA2
(C2), obtained from C1 and C2 as in

Example 1, respectively. Using [15, Algorithm 1] we get

ν(Λ1) = {1, 1, 1, 1, 1, 1}, ν(Λ2) = {1, 3/4, 1/2, 3/4, 1, 1},

which shows that ΛA2
(C2) is not stable as there exists an 2-

dimensional Λ′ ⊆ ΛA2(C2) with vol(Λ′) < 1.
In fact, using Definition 5, with an extensive computation,

we get

Θ
(1)
ΛA2

(C1)
(z) = 12q1 + 60q2 + 160q3 + 252q4 + · · · ,

Θ
(2)
ΛA2

(C1)
(z) = 300q1 + 1968q3 + 3840q4 + · · · ,

Θ
(2)
ΛA2 (C2)

(z) = 80q
3/4 + 44q1 + 768q

7/4 + · · · .

It is worth mentioning that the boldfaced coefficients cannot
be guaranteed by Lemma 1, as they do not correspond to the
minimum sublattice volume. Here, we simply obtained the
values numerically.

Furthermore, our findings indicate that the two Construction
A lattices ΛA2

(C1) and ΛA2
(C2) are non-isometric, which

partially addresses the question raised in [3]: “Can one can
hear the shape of a lattice?” Thus, it appears that we can indeed
“hear” the shapes of lattices through this newly introduced
definition of the generalized theta series for lattices. ♢
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Fig. 3. Theta series ratio as a function of τ > 0 in Example 5. Observe that
∆ΛA4

(C3)(τ) > 1 for all τ > 0.

Similarly, as the generalized Hamming weight can be used
to distinguish equivalent codes, the generalized theta series
serves as a geometric invariant that can help determine whether
two lattices are isometric, which is the hard problem behind
the Lattice Isomorsphim Problem (LIP) [22]. We emphasize,
however, that this does not necessarily pose a threat to cryp-
tographic schemes based on the LIP, since computing the
r-th generalized Euclidean norm or generalized theta series
remains computationally expensive and, therefore, impractical
for general lattices.

B. Conjectures Do Not Hold for Isodual Lattices!

We provide next a counterexample which proves the secrecy
gain conjecture for isodual lattices [14, Conj. 1] not to be true.

Example 5: Consider a Z4-linear code C3 with generator
matrix

GC3 =

1 0 0 1 2 2
0 1 0 2 0 2
0 0 1 2 2 0

.

Applying [15, Algorithm 1] we obtain

ν
(
ΛA4

(C3)
)
= {1, 3/4, 1/2, 3/4, 1, 1},

and thus the lattice ΛA4
(C3) is not stable. Moreover, its

generalized theta series is given by

Θ
(1)
ΛA4

(C3)
(z) = 12q1 + 16q

7/4 + 8q2 + 32q
9/4 + · · · ,

Θ
(2)
ΛA4

(C3)
(z) = 144q

3/4 + 8q1 + 16q
3/2 + · · · .

Note that ΛA4
(C3) =

1
2 (ϕ4(C3)+4Zn) and C is an isodual

bordered double circulant code [23, Lemma 2.4], thus ΛA4(C3)
is isodual, [24, p. 378], [13, Sec. III-B]. Its theta series ratio
is illustrated in Fig. 3, and ∆ΛA4 (C3)(1) ≈ 1.0026 > 1,
which demonstrates that Conjecture 1 is not true for isodual
lattices. However, this does not disprove the conjecture since
isodual lattices are not necessarily to be stable, as shown in
this example. We also observe that, although its theta series
ratio exhibits one symmetry point, it attains its maximum at
τ = 1, rather than the minimum. Therefore, Conjecture 2 does
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Fig. 4. Theta series ratio as a function of τ > 0 for a ΛA4 (C4) lattices
that satisfy Conjecture 2. However, it can be observed that it does not satisfy
Conjecture 1; that is, there exists some τ > 0 such that ∆ΛA4

(C4)(τ) > 1.

not hold as well. This invalidates the current formulation of
the secrecy gain conjecture for isodual lattices [14, Conj. 1],
and consequently, its generalization to formally unimodular
lattices presented in [12, Conj. 37]. ♢

Next, we provide another compelling example that violates
Conjecture 1 while satisfying Conjecture 2.

Example 6: Consider a Z4-linear code C4 with generator
matrix

GC4 =

1 0 0 0 1 1
0 1 0 1 0 2
0 0 1 1 2 0

.

Applying [15, Algorithm 1] we get

ν
(
ΛA4(C4)

)
= {0.75, 0.88, 0.77, 0.88, 0.75, 1},

which indicates that ΛA4
(C4) is not stable.

We demonstrate the theta series ratio in Fig. 4. As shown,
the theta series ratio clearly reaches its minimum at τ = 1,
thereby satisfying Conjecture 2. Nevertheless, there exist re-
gions of τ where the theta series ratio remains strictly greater
than 1, revealing that Conjecture 1 does not hold for this
isodual lattice.

VI. CONCLUSION

We have presented a new lattice invariant, the generalized
theta series. It characterizes the volume of lattices generated
by r linearly independent lattice vectors, with r ∈ [1 : n].
In terms of applications, calculating the generalized theta
series of a lattice solves the r-dimensional densest sublattice
problem, serves as an auxiliary tool to decide whether two
lattices are isomorphic, and can be used to find stable lattices.
In this work, we have applied this new lattice property to
find counterexamples for a decade-long conjecture about the
secrecy gain of isodual (and more recently, formally self-
dual) lattices. Moving forward, we want to demonstrate further
properties of the generalized theta series, find relations through
the Jacobi theta functions [2, pp. 102–105] to speed up its
rather costly calculations. We also aim to further investigate the
relationship between the r-th generalized Hamming weights
of a code and the r-th generalized Euclidean norms of the
corresponding lattices derived from the code.
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