
Research Collection

Conference Paper

On the Capacity of Private Monomial Computation

Author(s):
Yakimenka, Yauhen; Lin, Hsuan-Yin; Rosnes, Eirik

Publication Date:
2020-02-26

Permanent Link:
https://doi.org/10.3929/ethz-b-000402672

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-b-000402672
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

On the Capacity of Private Monomial Computation
Yauhen Yakimenka, Hsuan-Yin Lin, and Eirik Rosnes

Simula UiB, N–5008 Bergen, Norway
Email: {yauhen, lin, eirikrosnes}@simula.no

Abstract—In this work, we consider private monomial
computation (PMC) for replicated noncolluding databases. In
PMC, a user wishes to privately retrieve an arbitrary multivariate
monomial from a candidate set of monomials in f messages over
a finite field Fq , where q = pk is a power of a prime p and
k ≥ 1, replicated over n databases. We derive the PMC capacity
under a technical condition on p and for asymptotically large q.
The condition on p is satisfied, e.g., for large enough p. Also, we
present a novel PMC scheme for arbitrary q that is capacity-
achieving in the asymptotic case above. Moreover, we present
formulas for the entropy of a multivariate monomial and for a
set of monomials in uniformly distributed random variables over
a finite field, which are used in the derivation of the capacity
expression.

I. INTRODUCTION

The concept of private computation (PC) was introduced
independently by Sun and Jafar [1] and Mirmohseni and
Maddah-Ali [2]. In PC, a user wishes to compute a function
of the messages stored in a set of databases without revealing
any information about the function to any of the databases. PC
can be seen as a generalization of private information retrieval
(PIR). In PIR, a user wants to retrieve a single message from
the set of databases privately. Applications of PC include, in
principle, all scenarios where insights about certain actions of
the user should be kept private. One practical motivation for
considering arbitrary functions is that of algorithmic privacy,
as protecting the identity of an algorithm running in the
cloud could be even more critical than data privacy in some
scenarios. Not only could the algorithm be valuable, but also in
some cases, parameters of the algorithm carry lifetime secrets
such as biological information of individuals [2].

The capacity in the linear case, i.e., the computation of
arbitrary linear combinations of the stored messages, has been
settled for both replicated [1] and coded [3], [4] databases.
In the coded databases scenario, the messages are encoded
by a linear code before being distributed and stored in a set
of databases. Interestingly, the capacity in the linear case is
equal to the corresponding PIR capacity for both replicated and
coded databases. The monomial case was recently considered
in [5], [6]. However, the presented achievable schemes have a
PC rate, defined here as the ratio between the smallest desired
amount of information and the total amount of downloaded
information, that in general is strictly lower than the best
known converse bound for a finite number of messages. PC
schemes in the coded case for arbitrary polynomials were
considered by Karpuk and Raviv in [7], [8], and recently
improved in [5] when the number of messages is small.

The capacity of private polynomial computation for coded
databases remains open.

In this work, we first derive formulas for the entropy of a
multivariate monomial and a set of monomials in uniformly
distributed random variables over a finite field. We then present
a novel PC scheme for multivariate monomials in the messages
stored in a set of replicated noncolluding databases. The key
ingredient of the scheme is the use of discrete logarithms. The
discrete logarithm in the multiplicative group of a finite field
of order q = pk (p is a prime and k ≥ 1) is a bijection to the
integer ring of size q − 1, mapping multiplication to addition.
Hence, the discrete logarithm maps multivariate monomial
retrieval to linear function retrieval, given that none of the
messages is the zero element. The latter holds with probability
approaching one as q becomes large. The corresponding PC
rate in this limiting case is derived using the entropy formulas
from the first part of the paper. When the candidate set of
multivariate monomials is fixed (i.e., independent of q), the PC
rate converges to the PIR capacity for any number of messages
stored in the databases, under a technical condition on p and as
q goes to infinity. The condition on p is satisfied, e.g., for large
enough p. Also, the presented monomial computation scheme
is capacity-achieving in this asymptotic case.

II. PRELIMINARIES

A. General Definitions and Notation
Throughout the paper, vectors are denoted by bold font and

matrices are written as sans-serif capitals.
We work with different algebraic structures: the ring of

integers Z, rings of residuals Zm for integers m > 1, and finite
fields Fq , where q = pk is a power of a prime p and k ≥ 1.
Occasionally, R denotes any of these structures. We often use
the connection between Z and Zm. In principle, any element in
Z can be considered as an element of Zm, with correspondence
of addition and multiplication. If an expression consists of both
integers and elements of Zm, we assume all operations are
over Zm. When we need to stress that an element is in Zm,
we write a〈m〉 ∈ Zm for a ∈ Z. The same notation is used for
matrices, e.g., A〈m〉 has entries a〈m〉ij ∈ Zm for aij ∈ Z.

Any a ∈ Z can be viewed as a〈p〉 ∈ Zp = Fp ⊆ Fq .
Operations on such elements of Fq are modulo p, as p is the
characteristic of Fq , i.e., the minimum positive integer l such
that l · α = 0 for all α ∈ Fq . Analogously, A ∈ Zs×t can be
viewed as A〈p〉 ∈ Fs×tq . Note the difference between A〈p〉 ∈
Fs×tq and A〈q〉 ∈ Zs×tq for q = pk and k > 1.

The multiplicative group F∗q = Fq \ {0} is cyclic (cf. [9,
Thm. 2.18]), and it is possible to define a discrete logarithm

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

31

function1 dlog : F∗q → Zq−1, which is an isomorphism
between (F∗q ,×) and (Zq−1,+).

We write [a] , {1, . . . , a} for a positive integer a. The
greatest common divisor (gcd) of a1, . . . , as ∈ Z is denoted
by gcd(a1, . . . , as), with the convention gcd(0, . . . , 0) , 0

and gcd(a
〈m〉
1 , . . . , a

〈m〉
s ,m) , gcd(a1, . . . , as,m). We write

a | b when a divides b, and a - b otherwise. The binomial
coefficient of a over b (both nonnegative integers) is denoted
by
(
a
b

)
where

(
a
b

)
= 0 if a < b. The transpose of A is denoted

by Aᵀ.
A k × k minor in R of a matrix A ∈ Rs×t, for a positive

integer k, is the determinant of a k×k submatrix of A obtained
by removing s−k rows and t−k columns from A. The largest
integer r such that there is a nonzero r × r minor of A is
called the rank of A in R and denoted by rankR A. A matrix
A ∈ Rs×s is invertible in R if and only if the determinant of
A is invertible as an element of R (cf. [9, Thm. 2.1]).

For A ∈ Zs×t, we denote the gcd of all k × k minors of
A by gk(A). If δ ∈ Z is some minor of A, the corresponding
minor of A〈m〉 is δ〈m〉. Hence, rankZm A = rankZ A for all
m - gr(A), where r = rankZ A.2 Also,

rankFq A = rankZ A ⇔ p - gr(A). (1)

It is known [10, Cor. 1.13, Cor. 1.20] that there exists a unique
diagonal matrix D = diag(d1, . . . , dmin(s,t)) ∈ Zs×t called the
Smith normal form of A, with the following properties.

1) D = PAQ for some matrices P ∈ Zs×s and Q ∈ Zt×t
invertible in Z,

2) di | di+1 for i ∈ [min(s, t)− 1],
3) d1d2 · · · di = gi(A) for i ∈ [min(s, t)].
The diagonal elements d1, . . . , dmin(s,t) are invariant

factors, and di = 0 if and only if i > rankZ A. While D
is unique, the matrices P and Q are not unique in the general
case. It is also important to mention that the Smith normal form
is defined for matrices over principal ideal domains (PIDs).
For example, Z is a PID while Zm is not (in general).

Random variables are labeled by capital roman letters and
we write X ∼ Y to indicate that X and Y are identically
distributed. Moreover, X ∼ U(S) means that X is uniformly
distributed over the set S. We use log to denote logarithm
base-2, although most statements hold for an arbitrary constant
base. We denote the entropy in bits and q-ary units by H(·)
and Hq(·), respectively, and I(·; ·) denotes mutual information.
The binary entropy function is denoted by h(·).

The notation O(φ(x)) stands for any function ψ(x) in x
such that |ψ(x)/φ(x)| < B for all large enough x and some
constant B > 0 independent of x. Also, o(φ(x)) represents any
ψ(x) such that limx→∞ ψ(x)/φ(x) = 0. In particular, O(1) is
any bounded function and o(1) is any function that converges
to zero as x→∞.

B. Private Computation
Suppose we have n noncommunicating databases, each

storing duplicated data: f messages subpacketized into λ parts,

1Strictly speaking, dlog requires fixing a particular generator of F∗
q .

2In particular, the requirement a - b is satisfied if a > b.

each part denoted as X(j)
i ∈ Fq for i ∈ [f] and j ∈ [λ]. The

subpackets are considered mutually independent and uniformly
drawn from Fq . There are µ public functions ϕ1, . . . , ϕµ,
where ϕi : Ffq → Fq for i ∈ [µ]. The user randomly chooses
a secret index V ∼ U([µ]) and wants to retrieve

FV =
(
ϕV (X(1)), . . . , ϕV (X(λ))

)
∈ Fλq ,

where X(j) , (X
(j)
1 , . . . , X

(j)
f), j ∈ [λ], without revealing

any information about V . To achieve that, the user and the
databases employ the following scheme.

1) The user generates secret randomness R, computes
queries Qj = Qj(V,R), j ∈ [n], and sends the j-th query
to the j-th database.

2) Based on Qj and all the messages, the j-th database
computes the response Aj = Aj

(
Qj ,X

(1), . . . ,X(λ)
)

and sends it back to the user.
3) Using all available information, the user can recover FV .
Formally, we require the scheme to satisfy

Privacy: I(V ;Qj) = 0, for all j ∈ [n],
Recovery: H(FV | V,R,A1, . . . , An) = 0.

Definition 1. The download rate of a PC scheme over the
field Fq , referred to as the PC rate, is defined as

R = R(n, f, µ, {ϕi}, λ, {Qj}, {Aj}, q) ,
minv∈[µ] H(Fv)

∆
,

where ∆ is the expected total number of downloaded bits,
referred to as the download cost. The supremum of all
achievable rates for all choices of λ, {Qj}, and {Aj} is the
PC capacity over Fq , CPC(n, f, µ, {ϕi}, q).

In case µ = f and ϕi(x1, . . . , xf) = xi for i ∈ [f], PC
reduces to PIR with capacity CPIR(n, f) , (1+1/n+1/n2 +
· · ·+ 1/nf−1)−1 [11]. Note that CPIR is independent of q.

The case when ϕ1, . . . , ϕµ are linear functions described
by a matrix of coefficients A ∈ Fµ×fq without zero rows, is
referred to as private linear computation (PLC). Its capacity
CPLC only depends on n and r = rankFq A, and it holds that
CPLC(n, r) = CPIR(n, r) [1].3

In this work, we consider private monomial computation
(PMC), i.e., the case when ϕi(x1, . . . , xf) = xai11 xai22 · · ·x

aif
f ,

i ∈ [µ], where aij ∈ Z. The monomials can be described by a
matrix of degrees A = (aij) ∈ Zµ×f , and we assume there are
no constant functions, i.e., no zero rows in A. The capacity of
PMC is denoted by CPMC(n, f, µ,A, q).

III. ENTROPIES OF LINEAR FUNCTIONS AND MONOMIALS

Lemma 1. Let a ∈ Z and Y ∼ U(Zm). Then,

H(aY) = H(a〈m〉Y) = logm− log gcd(a,m).

Proof: From the theory of linear congruences [12, Sec. 5,
Thm. 1], the equation ay = b has d = gcd(a,m) solutions in

3In [1], the authors assume the messages are among the functions, e.g.,
ϕi(x1, . . . , xf) = xi for i ∈ [f]. However, this is not required as we
can define linearly independent functions as new variables and express other
functions in these variables.

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

32

Zm if d | b and no solutions otherwise. Therefore, the random
variable aY takes m/d different values from Zm equiprobably,
and the required statement follows.

Lemma 2. Let A ∈ Zs×t be a fixed matrix whose invariant
factors are d1, . . . , dmin(s,t). Let Y = (Y1, . . . , Yt) ∼ U(Ztm),
r = rankZ A, and r′ = rankZm A〈m〉. Then,

H(AY) = r logm−
r∑

i=1

log gcd(di,m) (2)

= r′ logm−
r′∑

i=1

log gcd(di,m). (3)

Proof: Recall that, since Y is defined over Ztm, the
operations in AY are over Zm. In other words, AY is a
shorthand for A〈m〉Y .

Let D = PAQ be the Smith normal form of A, where
both P ∈ Zs×s and Q ∈ Zt×t are invertible over Z (i.e.,
their determinants are ±1) and D = diag(d1, . . . , dr, 0, . . . , 0).
After taking modulo m from both sides, we obtain D〈m〉 =
P〈m〉A〈m〉Q〈m〉, where P〈m〉 and Q〈m〉 are both invertible
over Zm (their determinants are ±1 in Zm too) and D〈m〉 =
diag(d

〈m〉
1 , . . . , d

〈m〉
r , 0, . . . , 0). Therefore,

H(D〈m〉Y) = H(P〈m〉(A〈m〉Q〈m〉Y)) = H(A〈m〉Q〈m〉Y)

= H(A〈m〉(Q〈m〉Y)) = H(A〈m〉Y) = H(AY),

because P〈m〉 and Q〈m〉 are invertible over Zm, and
multiplication from the left by an invertible matrix is a
bijection. Thus, we can consider H(D〈m〉Y) instead of
H(AY). But D〈m〉Y = (d

〈m〉
1 Y1, . . . , d

〈m〉
r Yr, 0, . . . , 0) with

mutually independent entries. Hence,

H(D〈m〉Y) =

r∑

i=1

H(d
〈m〉
i Yi)

Lem. 1
= r logm−

r∑

i=1

log gcd(di,m).

Finally, (3) holds because m | di for i > r′ and hence
gcd(di,m) = m.

Corollary 1. In the setting of Lemma 2, H(AY) = r logm+
O(1), as m→∞, where r = rankZ A.

Proof: For all m > dr and all i ∈ [min(s, t)], it holds
that d〈m〉i = di. In this case, r′ = r and

H(AY) = r logm−
r∑

i=1

log gcd(di,m)

≥ r logm− log

r∏

i=1

di = r logm− log gr(A).

(4)

On the other hand,

H(AY) = r logm−
r∑

i=1

log gcd(di,m) ≤ r logm. (5)

We note that both (4) and (5) are attained for infinitely many
values of m, e.g., for m = ugr(A) and m = 1 + ugr(A),
respectively (for any positive integer u). In other words,
H(AY) does not converge as m→∞.

Finally, as log gr(A) does not depend on m, we have

H(AY) = r logm+O(1), as m→∞.

Next, we present some results on entropies of monomials
over finite fields. The key idea is to use the bijection of dlog
and treat a special case of zero separately.

Lemma 3. Let a1, . . . , at ∈ Z, X1, . . . , Xt ∼ U(Fq) be
mutually independent, τ be the number of nonzeros among
a1, . . . , at, and π = (1− 1/q)

τ . Then,

H(Xa1
1 Xa2

2 · · ·Xat
t) = h(π) + π log

q − 1

gcd(a1, . . . , at, q − 1)
.

Moreover, if not all a1, . . . , at are zeros,

Hq(X
a1
1 Xa2

2 · · ·Xat
t) −−−→

q→∞
1.

Proof: If ai = 0, the variable Xi is not present in the
monomial. Hence, we can exclude such variables and assume
a1, . . . , aτ ∈ Z \ {0}. Dropping zero arguments of the gcd
above does not change its value either.

Let M = Xa1
1 Xa2

2 · · ·Xaτ
τ . Define Z = 0 if M = 0 and

Z = 1 otherwise. Then, π = P {M 6= 0} = P {Z = 1} and

H(M) = H(Z) + H(M | Z)−H(Z |M)

= h(π) + H(M | Z = 0)(1− π) + H(M | Z = 1)π

= h(π) + πH(M |M 6= 0).

Now, M 6= 0 if and only if none of X1, . . . , Xτ is zero.
In this case, all X1, . . . , Xτ ∈ F∗q and we can define Yj =
dlogXj ∈ Zq−1 for j ∈ [τ] and L′ = dlogM = a1Y1 + · · ·+
aτYτ ∈ Zq−1. Since dlog is bijective, Y1, . . . , Yτ ∼ U(Zq−1)
and H(M | M 6= 0) = H(L′). By applying Lemma 2 with
m = q − 1, s = 1, r = 1, and d1 = gcd(a1, . . . , aτ), we get

H(L′) = log
q − 1

gcd(a1, . . . , aτ , q − 1)
.

Further, as q → ∞, π → 1 and therefore h(π) → 0.
Additionally, gcd(a1, . . . , aτ , q − 1) ≤ min(|a1|, . . . , |aτ |) =
O(1), as q →∞. Finally,

Hq(X
a1
1 Xa2

2 · · ·Xat
t) =

H(Xa1
1 Xa2

2 · · ·Xat
t)

log q
−−−→
q→∞

1.

Theorem 1. Let A ∈ Zs×t be a fixed matrix of coefficients
with rank r = rankZ A. Let X1, . . . , Xt ∼ U(Fq) be mutually
independent. For i ∈ [s], define Mi = Xai1

1 Xai2
2 · · ·Xait

t ∈ Fq
and M = (M1, . . . ,Ms). Then,

H(M) = r log q +O(1), as q →∞.

Proof: First, if there is a zero column in A, we can drop
the corresponding variable, as it does not influence either the
values of any of the monomials or rankZ A. Thus, for the
remainder of the proof, we assume there are no zero columns

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

33

in A, and we also consider values of q large enough so that
there are no zero columns in A〈q−1〉 as well.

Define Z = 0 if X1X2 · · ·Xt = 0 and Z = 1 otherwise. It
holds that π = P {Z = 1} = (1 − 1/q)t. Moreover, Z = 0 if
and only if any of the monomials M1, . . . ,Ms is zero. Hence,
H(Z |M) = 0 and we have

H(M) = H(Z) + H(M | Z)−H(Z |M)

= h(π) + (1− π) H(M | Z = 0) + πH(M | Z = 1).

Next, Z = 1 if and only if none of X1, . . . , Xt is zero,
i.e., all X1, . . . , Xt ∈ F∗q . In this case, we can define Yj =
dlogXj ∈ Zq−1, for j ∈ [t], L′i = dlogMi = ai1Y1 + · · · +
aitYt ∈ Zq−1, for i ∈ [s], and L′ = (L′1, . . . , L

′
s). Then,

H(L′) = H(M | Z = 1) and

|H(M)−H(L′)| = |H(M)−H(M | Z = 1)|
= |h(π) + (1− π) H(M |Z = 0) + (π − 1) H(M | Z = 1)|
≤ h(π) + (1− π)|H(M |Z = 0)−H(M |Z = 1)|
≤ h(π) + s(1− π) log q = o(1), as q →∞.
From Corollary 1 with m = q − 1, we have H(L′) =

r log(q − 1) +O(1) = r log q +O(1), as q →∞. Finally,

H(M) = H(L′) + o(1) = r log q +O(1), as q →∞.
Corollary 2. In the setting of Theorem 1, consider q = pk

with p - gr(A). Then,

|Hq(M)−Hq(L)| = o(1), as q →∞,
where Li = ai1X1 + · · · + aitXt ∈ Fq for i ∈ [s], and L =
(L1, . . . , Ls).4

Proof: As A defines a linear transformation of a vector
space over Fq , H(L) = rankFq A · log q. From (1) and since
p - gr(A), we obtain rankFq A = rankZ A = r. Next, from
Theorem 1, as q →∞,

|Hq(M)−Hq(L)| = |H(M)−H(L)|
log q

=
O(1)

log q
= o(1).

Note that we do not require p to be either fixed or infinitely
large. However, all primes p > gr(A) satisfy the requirement
p - gr(A). Corollary 2 states that the entropy of any fixed set of
monomials is equal to the entropy of the corresponding set of
linear functions (i.e., defined by the same matrix A), both over
Fq , when p - gr(A) and as q approaches infinity. Moreover, this
also holds for conditional entropies consisting of various sets
of monomials because they can be expressed as a difference
of two unconditional entropies. This key observation is further
used in Section IV-B.

IV. ACHIEVABLE SCHEME

A. Sun–Jafar Scheme for Private Linear Computation

We build our PMC achievable scheme based on the Sun–
Jafar scheme for PLC ([1, Alg. 1], referred to as PC there).
Due to lack of space, we do not present their scheme in all

4In contrast to Lemma 2 and Corollary 1, L is defined over the field.

details and refer the reader to [1] for a full description and
analysis. Here, we briefly repeat the facts (in our notation)
essential for further discussion.

The Sun–Jafar scheme uses λ = nµ subpackets. From each
of the n databases, the user downloads symbols in µ blocks.
The b-th block, b ∈ [µ], of each database consists of (n −
1)b−1

(
µ
b

)
symbols, and each symbol is a linear combination

(using only coefficients ±1) of b judiciously chosen pieces
ϕu(X(j)) for different values of u ∈ [µ] and j ∈ [λ]. Since all
ϕu are linear combinations, each symbol the user downloads
is some linear combination of {X(j)

i }. The user’s randomized
queries define which linear combinations the databases will
reply with. The queries enforce symmetry across databases
and function evaluation symmetry within symbols downloaded
from each database. This ensures privacy of the user.

A crucial observation is that (n−1)b−1
(
µ−r
b

)
of the symbols

in block b of each database are redundant based on side
information downloaded from other databases. More precisely,
these redundant symbols are linear combinations of other
symbols in block b from the same database as well as symbols
downloaded from other databases. Hence, they need not to
be downloaded, as the user can reconstruct them offline. This
preserves the user’s privacy while reducing the download cost
to the value corresponding to the PLC capacity. A distinctive
property of the Sun–Jafar scheme is that it is oblivious to the
coefficients of the linear functions ϕv . It is only the number
of them, µ, that matters. Furthermore, the scheme can be used
for PIR if µ = f and the linear functions are the messages,
i.e., ϕi(x1, . . . , xf) = xi for i ∈ [f]. In this case, there are no
redundant symbols in any block.

B. Private Monomial Computation

Let λ = nµ and suppose that none of {X(j)
i } equals

zero. Then we can construct a multiplicative scheme by
substituting each linear combination of {ϕv} in the Sun–
Jafar scheme with a corresponding multiplicative combination.
For example, if at some step the user downloads the
symbol ϕ1(X(j1)) + ϕ2(X(j2)) − ϕ3(X(j3)), j1, j2, j3 ∈
[λ], then the corresponding multiplicative combination is
ϕ1(X(j1))ϕ2(X(j2))

(
ϕ3(X(j3))

)−1
, where the functions ϕv

now denote the corresponding monomials. Since there are
no zeros among {X(j)

i }, all operations are valid and ensure
correct reconstruction of the monomial of interest. Moreover,
from Corollary 2, when p - gr(A) and as q → ∞, the
entropies of all the symbols as well as the entropy of each
block b conditioned on the side information received from
other databases converge to those of the Sun–Jafar scheme.
This means that in the multiplicative scheme above, a database
can also encode the whole b-th block into no more than
(n−1)b−1

((
µ
b

)
−
(
µ−r
b

))
q-ary symbols, resulting in the same

download cost as in the Sun–Jafar scheme. Since there is
only a finite number of entropies involved, we can satisfy
the requirement on p from Corollary 2 for all of them
simultaneously, e.g., by requiring p to be large enough (but
not necessarily approaching infinity).

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

34

Now, in case any of {X(j)
i } equals zero, we can ignore

dependencies between the monomials and run a PIR scheme,
for example, the same Sun–Jafar scheme in PIR mode for µ
messages. Altogether, our scheme is as follows.

Algorithm 1: PMC Scheme

1 if there are no zeros among {X(j)
i } and µ > r then

2 Each database replies according to the
multiplicative scheme.

3 else
4 Each database replies according to the Sun–Jafar

scheme in PIR mode oblivious to the
dependencies between the monomials.

Note that the queries of both schemes need to be uploaded
since the user does not know if there are zeros among {X(j)

i }.
Moreover, the user can determine which scheme is used
(Line 2 or Line 4) from (r, µ) and the size of the responses (the
size is smaller for the multiplicative scheme provided r < µ).

We note that privacy of the user in the suggested PMC
scheme is inherited from the privacy of the Sun–Jafar scheme.

Theorem 2. For PMC with n databases, f messages, and
µ monomials defined by a degree matrix A ∈ Zµ×f of rank
r = rankZ A, for p - gr(A) and as q →∞, the PMC capacity
converges to that of PIR: CPMC(n, f, µ,A, q)→ CPIR(n, r).

Proof: First, we show that the PC rate CPIR(n, r) is
achievable by Algorithm 1. For Line 2, for p - gr(A) and as
q →∞, the download cost measured in q-ary units converges
to nµ/CPLC(n, r) = nµ/CPIR(n, r). The download cost at
Line 4 is nµ/CPIR(n, µ).

The probability that none of {X(j)
i } equals zero is π =

(1−1/q)n
µf → 1, as q →∞. Therefore, the average download

cost of Algorithm 1 becomes

nµ
(

π

CPIR(n, r)
+

1− π
CPIR(n, µ)

)
−−−→
q→∞

nµ

CPIR(n, r)
.

On the other hand, from Lemma 3, it follows that

min
v∈[µ]

Hq(Fv) = nµ · min
v∈[µ]

Hq(ϕv(X
(1))) −−−→

q→∞
nµ.

Altogether, we have that the download rate of our PMC scheme
converges to the PIR capacity for r messages.

It remains to prove the converse, i.e., showing that
CPIR(n, r) is an upper (or outer) bound on the PC capacity. For
that, we consider the general converse in [6, Thm. 1] and show
that, for q →∞ and provided p - gr(A), the upper bounds from
[6, Thm. 1] coincide for the monomial and linear cases with the
same matrix A. Note that [6, Thm. 1] gives µ! upper bounds on
the PC capacity (according to the number of permutations of µ
functions). For the linear case, the outer bounds in [6, Thm. 1]
reduce to CPIR(n, r), independent of q. In general, for a fixed
permutation, the bound depends on minv∈[µ] Hq(ϕv(X

(1)))
and joint entropies of different subsets of function evaluations.
Then, it follows from the key observation in Section III that

this bound is coinciding for the monomial and linear cases as
q →∞, provided p - gr(A) (details omitted for brevity).

Corollary 3. In the setting of Theorem 2, the scheme in
Algorithm 1 is capacity-achieving for p - gr(A) and as q →∞.

Note that we prove that the scheme in Algorithm 1 is
capacity-achieving only for asymptotic q and provided p -
gr(A). As an example, take µ = f = 2, n = 2, ϕ1(x1, x2) =
x21x2, and ϕ2(x1, x2) = x1x

2
2. Then the asymptotic PC rate

of Corollary 3 is CPIR(2, 2) = 2/3, since r = rankZ A = 2.
On the other hand, the PC capacity CPC for two arbitrary
functions for any finite field is known [1, Sec. VII, Eq. (82)].
For this example, CPC = 2 H /(H(X2

1X2, X1X
2
2)+H), where

H , H(X2
1X2) = H(X1X

2
2) and the superscripts on the X’s

have been suppressed for brevity. Finally, Algorithm 1 defaults
to PIR mode and achieves the PC rate 2 H/3, which can be
shown to be smaller than CPC for any finite q.

V. CONCLUSION

We derived the PMC capacity for replicated noncolluding
databases, by considering the case of an arbitrary large field
and under a technical condition on the size p of the base field,
which is satisfied, e.g., for p large enough. A PMC scheme that
is capacity-achieving in the above asymptotic case was also
outlined. Furthermore, we presented formulas for the entropy
of a multivariate monomial and for a set of monomials in
uniformly distributed random variables over a finite field.

ACKNOWLEDGMENT

The authors would like to thank Srimathi Varadharajan and
Alessandro Melloni for useful discussions.

REFERENCES

[1] H. Sun and S. A. Jafar, “The capacity of private computation,” IEEE
Trans. Inf. Theory, vol. 65, no. 6, pp. 3880–3897, Jun. 2019.

[2] M. Mirmohseni and M. A. Maddah-Ali, “Private function retrieval,” in
Proc. Iran Workshop Commun. Inf. Theory (IWCIT), Tehran, Iran, Apr.
25–26, 2018, pp. 1–6.

[3] S. A. Obead and J. Kliewer, “Achievable rate of private function retrieval
from MDS coded databases,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Vail, CO, USA, Jun. 17–22, 2018, pp. 2117–2121.

[4] S. A. Obead, H.-Y. Lin, E. Rosnes, and J. Kliewer, “Capacity of private
linear computation for coded databases,” in Proc. 56th Allerton Conf.
Commun., Control, Comput., Monticello, IL, USA, Oct. 2–5, 2018, pp.
813–820.

[5] ——, “Private polynomial computation for noncolluding coded
databases,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris, France,
Jul. 7–12, 2019, pp. 1677–1681.

[6] ——, “On the capacity of private nonlinear computation for replicated
databases,” in Proc. IEEE Inf. Theory Workshop (ITW), Visby, Sweden,
Aug. 25–28, 2019, pp. 1–5.

[7] D. Karpuk, “Private computation of systematically encoded data with
colluding servers,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail,
CO, USA, Jun. 17–22, 2018, pp. 2112–2116.

[8] N. Raviv and D. A. Karpuk, “Private polynomial computation from
Lagrange encoding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris,
France, Jul. 7–12, 2019, pp. 1672–1676.

[9] N. Jacobson, Basic Algebra I, 2nd ed. Freeman and Company, 1985.
[10] C. Norman, Finitely Generated Abelian Groups and Similarity of

Matrices over a Field. Springer Science & Business Media, 2012.
[11] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”

IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, Jul. 2017.
[12] U. Dudley, Elementary Number Theory, 2nd ed. Freeman and Company,

1978.

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

35

