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Abstract—Private information retrieval protocols guarantee that
a user can privately and losslessly retrieve a single file from a
database stored across multiple servers. In this work, we propose
to simultaneously relax the conditions of perfect retrievability and
privacy in order to obtain improved download rates in the single
server scenario, i.e., all files are stored uncoded on a single server. In
particular, we derive the optimal tradeoff between download rate,
distortion, and information leakage when the file size is infinite and
the information leakage is measured in terms of the average success
probability for the server of correctly guessing the identity of the
requested file. Moreover, we present a novel approach based on
linear programming to construct schemes for a finite file size and
an arbitrary number of files. When the database contains at most
four bits, this approach can be leveraged to find provably optimal
schemes.

I. INTRODUCTION

Over the last decade, private information retrieval (PIR) [1]
has received significant attention in the information theory
community. See, for instance, [2]–[7] and references therein.
In PIR, a user can retrieve an arbitrary file stored in a set of
databases without disclosing any information (in an information-
theoretic sense) about which file she is interested in to the servers
storing the databases. For the single server scenario, i.e., all
files are stored uncoded on a single server, it is well-known
that downloading the entire database is optimal in terms of
upload and download cost. Hence, several different approaches
have been proposed in order to improve the communication cost.
For instance, relaxing the perfect information-theoretical privacy
condition by considering computationally-private information
retrieval (CPIR), where the privacy requirement relies on an
intractability assumption (e.g., the hardness of deciding quadratic
residuosity), was proposed already in 1997 [8]. In CPIR, given
infinite computational power, the identity of the requested file
can be determined precisely. By leveraging the assumption that
the user has some prior side information on the content of
the database, the download rate can indeed be improved while
preserving information-theoretic privacy [9]. In [9], two cases
are considered, namely whether or not the privacy of the side
information needs to be preserved. Several parallel and follow-up
works have appeared recently, see, e.g., [10], [11], and references
therein. Alternatively, the download rate can be improved by
relaxing the perfect privacy condition, referred to as weakly-
private information retrieval (WPIR), as shown in [12]–[15].
In [13], an exact expression for the WPIR capacity in the single
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server scenario was derived using both mutual information and
maximal leakage (MaxL) [16], [17] as privacy metric. Recently,
the multi-server WPIR problem under the MaxL metric has also
been studied in [18], [19].

In this paper, in addition to relaxing the perfect privacy
condition of PIR, we further propose to relax the condition of
perfect retrievability in order to obtain improved download rates
compared to single-server WPIR. As for information-theoretic
PIR, the upload cost is ignored as typically it does not scale
with the file size since queries for a small file size can be reused
for larger file sizes [2], [3]. From a practical perspective, the
single server setup, as opposed to the multi server case, is more
realistic as the noncolluding assumption is questionable in many
real-world scenarios. Moreover, in several scenarios, for instance,
when retrieving video, audio, or image files, allowing for a small
level of distortion can be acceptable as long as the retrieved
quality is high enough. In general, the range of acceptable
distortion is typically limited and decided by the application and
the user. In particular, we derive the optimal tradeoff between
download rate, distortion, and information leakage when the
file size is infinite, revealing a connection to conditional rate-
distortion theory [20], [21]. Here, the information leakage is
measured in terms of the average success probability for the
server of correctly guessing the identity of the requested file,
which can be shown to be equivalent to the MaxL metric. More-
over, we present a novel approach based on linear programming
(LP) to construct schemes for a finite file size and an arbitrary
number of files. When the database contains at most four bits,
this approach is employed to find provably optimal schemes.
These schemes can again be used to construct schemes for a
larger number of files and for a larger file size. Finally, we
compare the proposed approach with a nonconstructive scheme
based on random coding that is adapted from [22, Cor. 17].

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation
We denote random variables (RVs) by capital letters, e.g., X ,

and vectors by bold italic font, e.g., x. Analogously, X denotes
a random vector. Calligraphic capitals denote sets, e.g., X . We
let [n] , {1, 2, . . . , n} and let dH(x, y) denote the Hamming
distance, which equals 0 if x = y, and 1 otherwise. The set of
nonnegative real numbers is denoted by R≥0. The probability of
the event “X = x” is denoted by P [X = x] and EX [·] denotes
expectation with respect to X . The binary entropy function is
denoted by Hb(·). PX denotes the probability distribution of the
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Fig. 1. System model.

RV X , and if it is clear from the context, we sometimes drop the
subscript, i.e., PX(·) = P (·). We write X ∼ U (X ) to denote that
X is uniformly distributed over the set X and also write X ∼
P (·) to denote that X is distributed according to P (·). If Y is
a deterministic function of RVs X1, . . . , Xn, we conventionally
use Y to denote both the function and the random variable, i.e.,
Y = Y (X1, . . . , Xn).

Values of a discrete RV X can be encoded into variable-length
binary codewords by an optimal lossless source code (e.g., a
Huffman code). Throughout this paper, for every message x, we
denote by `(x) the codeword length in bits of x for a source code,
and by `∗(x) the length of x for an optimal code. Finally, we
denote by RX(D) the information rate-distortion function of the
source X under the distortion constraint EX,X̂ [d(X, X̂)] ≤ D

(cf. [23, Sec. 10.2]), where d(·, ·) denotes a distortion function.

B. System Model

We consider the case of a single server storing M files
X(1), . . . ,X(M), each of β symbols from X , where X(m) =

(X
(m)
1 , . . . , X

(m)
β ), for m ∈ [M]. We assume the files are inde-

pendent and identically distributed over U
(
X β
)
. As a shorthand,

we denote all the files together as X [M] = (X(1), . . . ,X(M)) ∼
U
(
XMβ

)
. The user wants to obtain the file with index M ∼

U ([M]) while keeping M to a certain extent private. Accord-
ingly, the user generates a randomized query Q ∈ Q, for some
set Q, according to a conditional distribution PQ|M (q|m) and
sends it to the server. The conditional probabilities P (q|m) are
considered to be public. Based on the query Q and the files
X [M], the server produces the response A = A(Q,X [M]) ∈ A,
for some set A, and sends it back to the user. Finally, the user
produces an estimate of the desired file X̂(M) = X̂(M)(Q,A),
where X̂(M) = (X̂

(M)
1 , . . . , X̂

(M)
β ) ∈ X̂ β , for some set X̂ . The

server produces its own guess M̂ = M̂(Q) ∈ [M] of the index
M . The overall system model is depicted in Fig. 1.

We call {X , X̂ ,Q,A,M, β, {P (q|m)}, A(·), {X̂(m)(·)}} a
lossy weakly-private information retrieval (LWPIR) scheme. The
function M̂(·) is not part of the scheme as it can be chosen by the
server freely. In the rest of the paper, we assume X = X̂ is finite
and therefore, without loss of generality, A is also finite. The
user wants to retrieve the file X(M) while leaking only partial
information about the index M . Clearly, some information is
always leaked, e.g., the very fact that the user is interested in
some part of the database. The server is assumed to be honest-
but-curious, i.e., it serves the user’s requests correctly but tries
to learn from them what the user is interested in.

A straightforward approach is to download all the files, yet
the user wants to minimize the size of the downloaded data. On
the other hand, some degree of imprecision with the data is often
allowed, which can potentially improve other parameters. This
results in a trifold tradeoff between: 1) the download rate, 2) the
distortion between the stored data and the reconstructed data by
the user, and 3) the amount of information leaked about what
the user wants to download.

C. Download Rate, Distortion, and Information Leakage
In order to transmit the response A, we encode it with a

lossless source code, which in general depends on the query.
We define the download rate as

R ,
EA,Q[`(A) |Q]

β

=
1

β

∑
q∈Q

PQ(q)EA|Q=q[`(A) |Q = q].

The distortion of the user’s reconstruction is defined as

D =
1

β

β∑
i=1

EM,Q,X(M)

[
d
(
X

(M)
i , X̂

(M)
i

)]
= EM

[
D(M)

]
,

where d: X × X̂ → R≥0 is a per-symbol distortion function,
which is chosen based on the particular type of data considered,
and

D(m) ,
1

β

β∑
i=1

EQ,X(m)

[
d
(
X

(m)
i , X̂

(m)
i

)]
, ∀m ∈ [M].

Note that a scheme might have distortions for some files that are
worse than the average distortion D. However, it can be shown
that any LWPIR scheme can be transformed into a scheme with
equal distortions for all the files.

The only source of undesirable leakage is the query Q, and we
denote and define the leakage of a given PQ|M as the probability
of the maximum-likelihood (ML) guess as

L(PQ|M ) ,
1

M

∑
q∈Q

max
m∈[M]

PQ|M (q|m).

It is clear that we have 1/M ≤ L ≤ 1 under this privacy metric.
More precisely, L = 1/M corresponds to the “no-leakage” case
where the server cannot do anything better than randomly guess
the index M . On the other hand, L = 1 corresponds to the “no-
privacy” case where the server always guesses M correctly. We
remark here that the robust MaxL metric introduced in [16], [17]
is given by log2

[
M · L(PQ|M )

]
. Hence, our leakage measure is

equivalent to MaxL and has a clear operational meaning.
If dH(x, y) is used as per-symbol distortion, then the distortion

D is the average number of incorrectly reconstructed symbols
of X(M), and the best estimate is the per-symbol ML estimate
X̂(m) = (X̂

(m)
1 , . . . , X̂

(m)
β ), where

X̂
(m)
i (q, a) , argmax

y∈X
P
[
A = a

∣∣∣Q = q,X
(m)
i = y

]
.

Our goal is to characterize the minimum download rate (over
all LWPIR schemes) under a given distortion constraint D ≤ D
and a given leakage level L ≤ L, for either an infinite or a
finite file size β. In the finite setting of M files of length β, we
denote such a minimum rate by R∗(D,L;M, β). For the infinite
setting, we define R∗(D,L;M) , limβ→∞R∗(D,L;M, β). For
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notational convenience, we sometimes omit the argument M
if it is contextually unambiguous. Similarly to the accustomed
characteristic of the PIR problem, we define the single-server
LWPIR capacity as the reciprocal of the minimum download
rate R∗(D,L;M). Note that from a source coding perspective,
a particular Q = q fixes the lossy compressor Aq(X [M]) ,
A(q,X [M]). The rate of an LWPIR scheme is thus equal to the
average compression rate (averaging both over Q and X [M]).

III. MAIN RESULTS

A. Example 1: Binary Data With M = 3 Files and |Q| = 4

We first present a motivating example to obtain a rate-
distortion tradeoff for a fixed PQ|M (and thus a fixed leakage).
In this example, we assume X ∼ U({0, 1}) (uniform binary
source). It is known that RX(D) = 1− Hb(D), 0 ≤ D ≤ 1/2.

Consider the following P1(q|m):

q q1 q2 q3 q4

P1(q|1) 1/4 1/4 0 1/2
P1(q|2) 1/4 0 1/4 1/2
P1(q|3) 0 1/4 1/4 1/2

Clearly, this gives a leakage of L(P1(q|m)) = 1/3 ·
(1/4 + 1/4 + 1/4 + 1/2) = 5/12. Let us focus on the case of
infinite β. By using a time-sharing approach, a scheme can be
constructed as follows. During a fraction α = 1/2 of the time,
R = 2RX(D) and L = 1/2 can be achieved by requesting the
server to randomly compress any two of the three files, and
in the remaining time, R = 3RX(D) and L = 1/3 can be
achieved by requesting the server to compress all the files, which
gives a scheme with R = 1/2

[
2RX(D)

]
+ 1/2

[
3RX(D)

]
and

L = 5/12. However, as shown below, this simple scheme is only
suboptimal.

B. Minimum Download Rate (Infinite β)
In this subsection, we derive the minimum download rate

R∗(D,L;M).1 We express it as a solution of an optimization
problem, where the objective function is a weighted sum of rate-
distortion functions.

Theorem 1: The minimum download rate R∗(D,L;M) of
LWPIR with M files is the minimum value of the optimization
problem

min
PQ|M

min
{D(m)

q }

∑
q∈Q

PQ(q)
∑

m∈[M]

RX(D(m)
q ) (1a)

s.t.
1

M

∑
q∈Q

max
m∈[M]

PQ|M (q|m) ≤ L, (1b)

1

M

∑
q∈Q

∑
m∈[M]

PQ|M (q|m)D(m)
q ≤ D, (1c)

where |Q| ≤M+ 3.
The detailed proof can be found in the extended version. Here,

we sketch the main steps of the proof as follows. First, using the
optimal solutions of (1), it can be seen that the user can compress
each file X(m) with a given distortion D(m)

q , and thus the
corresponding rate RX

(
D(m)
q

)
is achievable as β → ∞. Using

1The results for minimum download rate automatically give analogous results
for capacity.

a time-sharing approach, we can see that the right-hand side
of (1) is achievable. The converse part is shown by combining
the standard converse proof for the rate-distortion function and
the approaches of conditional rate-distortion theory [21]. Finally,
the upper bound on the size of Q is proved by applying
Carathéodory’s theorem [23, Thm. 15.3.5].

We remark here that for the special case where D = 0 and
the so-called normal distortion measure is used [24], it can be
shown that the optimal LWPIR scheme from Theorem 1 is the
WPIR scheme presented in [13, Sec. V].

In fact, given an arbitrary conditional distribution PQ|M , the
inner minimization over the variables {D(m)

q } in Theorem 1 can
be solved, as stated in the following corollary.

Corollary 1: Assume that the rate-distortion function RX(·)
is differentiable in D. Then,

R∗(D,L;M) = min
PQ|M :

L(PQ|M )≤L

∑
q∈Q

PQ(q)
∑

m∈[M]

RX

(
D(m)∗
q

)
,

where the values D(m)∗
q , m ∈ [M], q ∈ Q, satisfy

PQ(q)

P (m, q)

dRX

dD

∣∣
D=D

(m)∗
q

= λ,

∀m ∈ [M], q ∈ Q, such that D(m)∗
q > 0,

PQ(q)

P (m, q)

dRX

dD

∣∣
D=D

(m)∗
q
≥ λ, (2)

∀m ∈ [M], q ∈ Q, such that D(m)∗
q = 0.

The Lagrange multiplier λ must be chosen such that∑
m∈[M]

∑
q∈Q

P (m, q)D(m)∗
q = D. (3)

Proof: The rate-distortion function RX(·) is nonincreasing,
convex, and continuous (see, e.g., [25, Ch. 3]). Fix a feasible
PQ|M in the optimization problem (1), and thus PQ is also fixed.
Then, the objective function

∑
q∈Q PQ(q)

∑
m∈[M] RX(D(m)

q )
is a nonnegative weighted sum of convex functions, and therefore
it is convex (cf. [26, Sec. 3.2.1]). The result then follows imme-
diately from the Karush–Kuhn–Tucker optimality conditions for
convex minimization problems [26, Sec. 5.5.3].

The following corollary gives expressions for the minimum
download rate in two special cases.

Corollary 2: The minimum download rate R∗(D,L;M) of
LWPIR with M files in the “no-leakage” and “no-privacy”
special cases are R∗(D,L = 1/M;M) = MRX(D) and
R∗(D,L = 1;M) = RX(D), respectively.

C. Example 1 (Continued)

We now present a scheme by using Corollary 1 to obtain the
optimal rate-distortion tradeoff for Example 1 (i.e., for the given
P1(q|m)). Note that dRX/dD = log2 (D/(1−D)).

From Corollary 1, we get the optimal solution of
{D(m)∗

q }m∈[3],q∈Q as follows:

q q1 q2 q3 q4

D(1)∗
q D∗1 D∗1 0 D∗2

D(2)∗
q D∗1 0 D∗1 D∗2

D(3)∗
q 0 D∗1 D∗1 D∗2
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Furthermore, from (2) and (3), D∗1 and D∗2 should satisfy
2

1

dRX

dD

(
D∗1
)
=

3

1

dRX

dD

(
D∗2
)
,

1

2
D∗1 +

1

2
D∗2 = D,

for D∗1, D∗2 > 0. From this, the optimal solution D∗1 is the
(unique) root of (1/(2D−D∗1)−1)

3/2−1/D∗1+1 and D∗2 = 2D−D∗1.

D. Equivalent Linear Programming Formulation (Finite β)

In this subsection, we show how to transform the problem of
finding R∗(D,L;M, β) into an LP. The solution of the LP prov-
ably provides the value of R∗(D,L;M, β) and a corresponding
scheme.

First, we concentrate on response functions. For a fixed value
of the query Q = q, it is a deterministic function

Aq(x) : XMβ → A
of Mβ symbols. A fixed response function Aq(·) defines a
random variable Aq(X [M]) with rate

Rq ,
EX[M]

[
`∗
(
Aq
(
X [M]

))]
β

and per-file distortion

D(m)
q ,

1

β

β∑
i=1

EX(m)

[
d
(
X

(m)
i , X̂

(m)
i

)
| Q = q

]
, ∀m ∈ [M].

An important observation is that for a fixed Q = q, the
values Rq and D

(m)
q , m ∈ [M], are only determined by the

function Aq(·) and do not depend on the way the user generates
other queries. Thus, we can express the rate and distortion of an
LWPIR scheme as

R = EQ [RQ] =
1

M

∑
m∈[M]

∑
q∈Q

P (q|m)Rq,

D = EM,Q

[
D

(M)
Q

]
=

1

M

∑
m∈[M]

∑
q∈Q

P (q|m)D(m)
q ,

and the leakage of the ML estimate by the server as

L =
1

M

∑
q∈Q

max
m∈[M]

P (q|m).

Now, assume all the possible response functions {Aq | q ∈ Q}
defined over XMβ are given, and their corresponding Rq , D

(m)
q ,

m ∈ [M], are pre-calculated. Then, the problem of rate mini-
mization can be formulated as an LP in the decision variables
P , {P (q|m) | m ∈ [M], q ∈ Q} for each pair of target values
of distortion D and leakage L, as

min
P

1

M

∑
m∈[M]

∑
q∈Q

P (q|m)Rq

s.t.
∑
q∈Q

P (q|m) = 1, m ∈ [M],

1

M

∑
m∈[M]

∑
q∈Q

P (q|m)D(m)
q ≤ D,

1

M

∑
q∈Q

ξq ≤ L,

0 ≤ P (q|m) ≤ ξq, q ∈ Q, m ∈ [M].

Here, the auxiliary variables ξq are introduced to model the
behavior of the max function.

To obtain an optimal solution, one needs in principle to
consider all possible (|X |Mβ)|X |

Mβ

response functions, which
grows super-exponentially in M and β. However, many of them
are in fact equivalent up to a permutation of A. Additionally,
many functions can be filtered out as they are inferior to other
functions, i.e., they have higher rate and higher per-file distortion
for all files, than some other response function. Alternatively,
one can restrict the response functions to a subclass, for which
the values of Rq and D

(m)
q are relatively easy to calculate.

Using these functions in the LP, we can find provably optimal
solutions in this restricted case. The schemes found can be used
as suboptimal constructive schemes for the original (unrestricted)
problem.

As a remark, we note that since the LWPIR problem can be
reformulated as an LP, the optimal tradeoff curve R∗(D,L;M, β)
is a piecewise-linear, convex, decreasing function of D when L
is fixed (or vice versa) and X is finite. This follows since the
number of response functions is finite for a finite X .

E. Optimal Tradeoff for M = 2, β = 2, and X = {0, 1}
To illustrate the LP method in Section III-D, we present more

details for the case of M = 2 files and β = 2 bits. Since the
input to each Aq is 4 bits in total, there are not more than 24

different elements in its image and thus the size of A can be
limited to 24. Therefore, the number of different functions from
{0, 1}4 to A is (24)2

4

. Discarding all the equivalent ones, we
have roughly 1010, which further drops to 3457 after the filtering.
An LP of this size can be solved easily, e.g., by using Gurobi
[27]. Moreover, the LP can be solved symbolically which gives
a closed-form expression for the optimal tradeoff.

Theorem 2 (Optimal tradeoff for M = 2, β = 2, X = {0, 1}):
For M = 2 files each of β = 2 bits, the minimum rate is

R∗(D,L;β) =



− 11
2 D+ 3− 2L, if D ∈

[
0, 1−L4

]
,

−5D+ 23−15L
8 , if D ∈

[
1−L
4 , 3(1−L)8

]
,

−4D+ 5−3L
2 , if D ∈

[
3(1−L)

8 , 5(1−L)8

]
,

− 8
3D+ 5−2L

3 , if D ∈
[
5(1−L)

8 , 1− L
]
,

−2D+ 1, if D ∈
[
1− L, 12

]
.

Using the same approach, we can find closed-form expressions
for all the binary cases with Mβ ≤ 4. However, efficient
filtering of potential response functions in general remains an
open question for future research.

IV. FINITE-SIZE LWPIR SCHEMES

In this section, we present some schemes for X = {0, 1}.

A. LWPIR Schemes From Small Optimal Schemes

We can further use the optimal schemes obtained for Mβ ≤ 4
with the LP method (see Section III-E) in order to construct
schemes for larger M and β. First, the longer files can be
split into smaller blocks and then a small scheme is run on the
corresponding blocks. The resulting scheme has the same rate,
distortion, and leakage as the small scheme. Second, a large set
of files can be split into subsets and a small scheme is run on

2265



0 0.13 0.25 0.38 0.5
0

4

8

12

16

Distortion, D

Rrep(D, 1/16)

RKV(D, 1/16)

R∗(D, 1/16)

0 0.13 0.25 0.38 0.5
0

2

4

6

8

Distortion, D

Rrep(D, 1/8)

RKV(D, 1/8)

R∗(D, 1/8)

0 0.13 0.25 0.38 0.5
0

0.25

0.5

0.75

1

Distortion, D

Rrep(D, 1)

RKV(D, 1)

R∗(D, 1)

Fig. 2. Download rate versus distortion of two finite-size LWPIR schemes for M = 16, β = 20 bits, and leakage L ∈ {1/16, 1/8, 1}. For comparison, the
corresponding asymptotic curves R∗(D, L), obtained from Theorem 1 and Corollary 2, are also depicted.

each subset of the files. The construction gives a higher rate but
smaller leakage, while distortion does not change.

We note that in both approaches the user needs to generate the
query only once and can reuse it for all instances of the small
scheme. Additionally, all the answers obtained from the small
schemes can be re-coded together, thus potentially decreasing
the overall rate. Finally, the two aforementioned constructions
can be combined.

For example, consider an optimal scheme S for M = 2
files of β = 2 bits each with leakage L = 1/2, distortion
D = 5/16, and rate R = 1/2. The scheme uses only one
response function (i.e., |Q| = 1), which outputs 0 if X [2] ∈
{1100, 1010, 0110, 1110, 1111}, and 1 otherwise. Note that
P [A = 0] = 1−P [A = 1] = 5/16. The response 0 is decoded to
the estimates (X̂(1), X̂(2)) = 1110, and 1 to 0001. If we need
a scheme S ′ for M′ = 2, β′ = 20, and L′ = 1/2, we split 20-bit
files into 2-bit blocks, and repeat the small scheme 10 times. The
server’s response is a 0/1-string of length 10. We can encode this
string with a Huffman code, which has an average length of 8.99
bits. The rate of the new scheme is R′ = 8.99/20 = 0.45 and the
distortion is D′ = D = 5/16. Further, we construct a scheme S ′′
for M′′ = 16, β′′ = 20, and L′′ = 1/16 as follows. Files are split
as X [16] = ((X(1),X(2)), (X(3),X(4)), . . . , (X(15),X(16))),
and the scheme S ′ runs on each of these pairs of files. If the
user wants file X(4), she keeps the answer corresponding to
(X(3),X(4)) and obtains X̂(4) with distortion D′′ = D′. The
rate is R′′ = 8R′ = 3.60 and the leakage is L′′ = 1/8L′ = 1/16.

In a similar manner, we constructed other schemes for M = 16
and β = 20 from the optimal schemes obtained with the LP
method for Mβ ≤ 4. The corresponding rate-distortion-leakage
curves are labeled by Rrep(D,L) in Fig. 2. For comparison, we
also plot the corresponding asymptotic curves R∗(D,L) (i.e.,
when β →∞), obtained from Corollary 2 (for L = 1 and 1/16)
or by numerically solving the optimization problem in Theorem 1
with Gurobi [27] (for L = 1/8). The asymptotic curves serve as
lower bounds on the finite-size curves.

B. Achievable LWPIR Rates From Lossy Compressors
Another way to construct LWPIR schemes is from lossy

compressors, as described below.
Consider the following (not necessarily optimal) LWPIR

scheme for M files of β bits each. The user chooses uniformly
at random a subset I ⊂ [M] of cardinality |I| = N such that

the index of interest M is in I, and sends I to the server. The
server concatenates the files indexed by I into a block of Nβ
bits, compresses it with some pre-agreed lossy compressor, and
sends it back to the user. The user reconstructs (with distortion)
the compressed files and keeps only the desired one, X̂(M).
The remaining N− 1 files have been requested only to trick the
server and are thus discarded. From the server’s perspective, M
is uniformly distributed over I, and thus the leakage is 1/N. The
rate and the distortion follow from the properties of the chosen
lossy compressor. This approach is general and works for both
finite and infinite β. We remark that by time-sharing schemes
with different values of N, we can construct LWPIR schemes
for arbitrary leakage levels (not only reciprocals of integers).

Now, we only need a lossy compressor. In the context of
finite-length information theory, the authors in [22] derived an
achievable rate of lossy compression for any finite block length β
and thus, proved existence of a corresponding lossy compressor.
The special case of the source X ∼ U ({0, 1}) is addressed
in [22, Cor. 17]. However, the fidelity criterion used in [22,
Cor. 17] is the excess-distortion probability, while most of the
works in rate-distortion theory, as well as our work, focus on the
average distortion. Since for a nonnegative RV Z, it holds that
E[Z] =

∫∞
0

P[Z > z] dz, we can derive results for the average
distortion criterion from the results in [22].

In Fig. 2, we plot achievable rate curves (labeled by
RKV(D,L)) corresponding to LWPIR schemes constructed as
described above using the lossy compressor from [22, Cor. 17].
Although the achievable rates are in general, except for very
low distortion values, lower than those of the schemes from
Section IV-A (labeled by Rrep(D,L)), they come at the price
of being nonconstructive, since the achievable rates presented
in [22, Cor. 17] are based on random coding arguments.

V. CONCLUSION

We proposed to simultaneously relax the conditions of perfect
retrievability and privacy of standard PIR, referred to as LWPIR,
in order to obtain improved download rates in the single server
scenario. In particular, the optimal rate-distortion-leakage trade-
off was established for an arbitrary number of asymptotically
large files. Moreover, we presented an approach based on LP to
construct schemes for a finite file size and an arbitrary number of
files. When the database contains at most four bits, the approach
allows to obtain provably optimal LWPIR schemes.
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