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Abstract—We consider the problem of collaborative person-
alized mean estimation under a privacy constraint in an envi-
ronment of several agents continuously receiving data according
to arbitrary unknown agent-specific distributions. In particular,
we provide a method based on hypothesis testing coupled with
differential privacy. Two privacy mechanisms are proposed and
we provide a theoretical convergence analysis of the proposed
algorithm for any bounded unknown distributions on the agents’
data. Numerical results show that for a considered scenario
the proposed approach converges much faster than a fully
local approach where agents do not share data, and performs
comparably to ideal performance where all data is public. This
illustrates the benefit of private collaboration in an online setting.

I. INTRODUCTION

Collaborative learning has attracted significant attention
lately through popular frameworks such as federated learning
(FL) [1]–[3] (partially decentralized) and fully decentralized
approaches like swarm learning [4]. However, different agents
in the learning environment may have different objectives and
hence the individually collected data may be heterogeneous
and specific for each personalized learning task. Despite this,
collaboration can significantly accelerate learning among a
set of agents sharing a limited set of common objectives. A
crucial part of any collaborative algorithm for personalized
learning is the identification of agents with data from similar
distributions, in particular in an online setting in which data
becomes available continuously over time.

Personalized approaches for distributed learning [5]–[7]
have attracted significant interest recently. In [7], Hanzely
and Richtárik introduced the concept of personalized FL. In
contrast to conventional FL, personalized FL looks for a trade-
off between a global model and local models learned by
each agent from its own dataset, as formulated in terms of a
correction term to the traditional empirical risk minimization
objective function. As shown in [7], personalization in general
yields reduced communication complexity.

For the online setting, previous work on collaborative learn-
ing has mostly focused on the multi-armed bandit (MAB)
model, mostly considering a single MAB instance (the arm
means do not vary across the agents), see, e.g., [8]–[10] and
references therein, while some recent works also consider
the case where the arm means vary across agents [11] and
with some amount of personalization by optimizing a mixture
between a global and local objectives [12].

In this paper, we consider the problem of collaborative
online personalized mean estimation, first introduced in [13],
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in which each agent continuously receives data according to an
unknown agent-specific distribution. The aim of each agent is
to calculate an accurate estimate of the mean of its underlying
distribution as quickly as possible. As in [13], we assume an
unknown underlying class structure where agents in the same
class receive data from distributions with the same mean.

A major limitation of the algorithm proposed in [13] is
that data is directly shared with other agents in the learning
environment without any protection, which is in contrast to
FL where there is no sharing of data amongst the agents.
This may leak sensitive user information to other agents in
the environment. In order to provide some level of user data
privacy, we propose to add random noise to the data before
it is released to other agents in the environment according
to the principle of differential privacy (DP) [14], [15]. Two
(online) privacy mechanisms inspired by those in [16], [17] are
proposed. Moreover, as opposed to the initial work in [13], we
consider an approach based on hypothesis testing, and provide
a theoretical convergence analysis of our proposed method
for any bounded distributions on the data (see Theorem 1).
Numerical results show that our proposed approach converges
faster than a fully local setting where agents do not share
data, and the best scheme performs comparably to ideal
performance where all data is public. This illustrates the
benefit of collaboration in an online setting while preserving
users’ data privacy. Due to lack of space, all proofs are omitted.

II. PRELIMINARIES

A. Notation
In general, but with some exceptions, we use uppercase

and lowercase letters for random variables (RVs) and their
realization, respectively, and italics for sets, e.g., X , x, and
X represent a RV, its realization, and a set, respectively.
The expectation of a RV X is denoted by E[X], while its
variance is denoted by Var[X]. We define [n] ≜ {1, 2, . . . , n}
and [i : j] ≜ {i, i + 1, . . . , j}, while R denotes the real
numbers. N (µ, σ2) denotes the Gaussian distribution with
mean µ and variance σ2. X ∼ P denotes that X is distributed
according to the distribution P . Standard order notations
O(·) and o(·) are used for asymptotic results, while Φ(·) is
the cumulative distribution function of the standard Gaussian
distribution. wH(n) denotes the Hamming weight of the binary
representation of the nonnegative integer n.

B. System Model (Problem Formulation)
There are M independent agents. Each agent a ∈ [M ] wants

to estimate the mean of its sample X
(1)
a , X

(2)
a , . . . ∈ Xa ⊂ R,
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where the sample follows an arbitrary unknown distribution
Da over the bounded set Xa with an (unknown) mean µa

and known standard deviation σa < ∞, where X
(t)
a arrives

to the agent a at time t. We assume the time is discrete and
synchronized between the agents. For simplicity, we assume
that Xa is the same for all agents a. The agents have limited
memory and thus decide to keep only the current mean of the
sample: X̄(t)

a = 1
t

∑t
i=1 X

(i)
a .

It is known that some agents a ̸= b might have samples from
the same distribution Da = Db, and they want to exploit this.
However, there is no preliminary information on the agents’
distributions and also, the agents would like to keep their
particular sample values private.

The collaborative algorithm consists of the agents exchang-
ing their current sample means. In order to preserve privacy,
a DP mechanism [14], [15] is applied before releasing the
current sample mean to other agents. More precisely, at each
time step t, the agent a receives X

(t)
a , updates its sample

mean X̄
(t)
a , and also chooses another agent b ∈ [M ] \ {a}

to query. The agent b then sends its current sample mean to
a, but privatized: X̄

(t)
b + Z

(t)
b→a, where Z

(t)
b→a is a Gaussian

RV (“noise”) with zero mean and variance depending on the
DP mechanism employed (see Section IV). While Z

(t)
b→a is

independent from the sample, it in general depends on the
noise generated by agent b at different times. We call a
particular construction of the noise Z

(t)
b→a a private release

mechanism.
Based on the content of its memory at time t, agent a

calculates its current estimate of µa, which we denote by µ
(t)
a .

The goal is to construct a collaborative protocol that allows for
faster convergence of µ(t)

a to µa. In this work, we measure the
speed of convergence in terms of the average expected squared
deviation from the mean, i.e., by

∑
a∈[M] E[(µ

(t)
a −µa)

2]/M as a
function of t.

Also, the agents want regular updates so that at every
moment t they have a good estimate of µa. Hence, we do
not consider the approach where one waits until t ≈ tmax and
then query every agent’s last sample mean.

C. Differential Privacy

We start by defining the concept of DP. Then, we provide
a key lemma based on the Gaussian mechanism.

Definition 1: A randomized function F : Xn → Y is (ϵ, δ)-
differentially private if for all subsets S ⊆ Y and for all
(x1, . . . , xn) ∈ Xn and (x′

1, . . . , x
′
n) ∈ Xn which differ in

a single component, i.e., xi ̸= x′
i for exactly one i ∈ [n],

Pr[F (x1, . . . , xn) ∈ S] ≤ eϵ Pr[F (x′
1, . . . , x

′
n) ∈ S] + δ.

Lemma 1: Let (x1, . . . , xn) ∈ Xn where X = [µ−L, µ+
L] for some finite values µ and L. Then, the noise-corrupted
sample mean (x1+···+xn)/n+ Z/n, where Z ∼ N

(
0, σ2

DP

)
and

σ2
DP ≜ 8L2 ln(1.25/δ)/ϵ2 is (ϵ, δ)-differentially private for 0 <

ϵ ≤ 1 and 0 < δ ≤ 1.

D. Mathematical Tools

Lemma 2: Assume independent RVs X1, X2, . . . , Xn have
Var[Xi] = σ2

i . If X = α1X1 + α2X2 + · · · + αnXn, where

∑n
i=1 αi = 1, then X has the minimum variance when the

weights αi are selected as α∗
i = 1

σ2
i

∑n
j=1

1

σ2
j

, and

min
α1,...,αn

Var[X] =

n∑
i=1

(α∗
i )

2
σ2
i =

1∑n
i=1

1
σ2
i

≤ min
i∈[n]

σ2
i .

Lemma 2 provides an intuition for the whole approach:
having access to RVs with the same mean and even very
high variances still allows to decrease the total variance of
the estimator X , provided the weights αi are properly chosen.

Assume we have two Gaussian RVs X ∼ N
(
µ, σ2

)
and

Y ∼ N
(
ν, τ2

)
, where the variances σ2 and τ2 are known,

but the means µ and ν are not. Here, we construct a simple
hypothesis test for checking if µ = ν as follows,

H0 : µ = ν and H1 : µ ̸= ν.

First, let Z = (X−Y )/
√
σ2+τ2 ∼ N ((µ−ν)/

√
σ2+τ2, 1). Then,

if we have a predefined confidence level θ ∈ [0, 1] and z ≜
Φ−1(1− θ/2), we

accept H0 if |Z| < z and reject H0 otherwise.
We call the situation when µ = ν but H0 is rejected, a type-I
error. The probability of type-I error is θ. And if µ ̸= ν but
H0 is accepted, we call this a type-II error.

III. OUR APPROACH

There are three ingredients of our approach that should be
addressed:

• private release mechanism Z
(t)
b→a that adds the minimum

amount of noise sufficient for (ϵ, δ)-DP of the sample by
the agent b (see Section IV),

• identification by the agent a of the agents with the same
distribution mean (decision rule, see Section III-B), and

• using the information obtained from these agents in order
to improve the local mean estimate (statistic Tb→a, see
Section III-A).

Formally, we define the class of agents having the same
distribution mean as a by Ca ≜ {b ∈ [M ] : Db = Da}. The
classes are not known, which makes the problem nontrivial.
We denote also by C(t)a ≜ {b ∈ [M ] : χ

(t)
a (b; θt) = 1} the

estimate of the class Ca by the agent a at time t, where
χ
(t)
a (b; θt) is some decision rule at time t, i.e., χ(t)

a (b; θt) = 1
if at time t agent a believes that agent b is in Ca. Here, θt is
a prescribed confidence level that depends on t.

A. Linear Statistic Tb→a

Let
∑κb→a

i=1 wi = 1, denote by t1, t2, . . . the times at which
agent b is queried by agent a, and let

Tb→a =

κb→a∑
i=1

wi

(
X̄

(ti)
b + Z

(ti)
b→a

)
(1)

be the current statistic of the received noise-corrupted sample
means by agent a from agent b after the κb→a-th query,
κb→a = 1, 2, . . . . Then (with t0 ≜ 0),

Var[Tb→a] = σ2
b

κb→a∑
i=1

(ti − ti−1)

(κb→a∑
j=i

wj

tj

)2

+ Var

[
κb→a∑
i=1

wiZ
(ti)
b→a

]
. (2)
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The weights {wi} depend on κb→a, but we omit this depen-
dency for simpler notation. Picking w1 = · · · = wκb→a−1 = 0
and wκb→a

= 1 corresponds to keeping the last update as in
[13], while picking w1 = · · · = wκb→a

= 1/κb→a corresponds
to what we refer to as the mean-of-mean (MoM) statistic. For
simplicity, we refer to the former approach as non-MoM.

B. Decision Rule
The sum

∑κb→a

i=1 wiX̄
(ti)
b is a weighted average of

the independent and identically distributed (i.i.d.) RVs
X

(1)
b , X

(2)
b , . . . , X

(tκb→a
)

b . If this sum is Gaussian distributed,
it follows from (1) that Tb→a is also Gaussian. Hence, we pick
a decision rule based on the hypothesis test outlined above in
Section II-D, i.e., we let χ(t)

a (b; θt) = 1, for b ̸= a, if∣∣∣X̄(t)
a − Tb→a

∣∣∣ < Φ−1

(
1− θt

2

)√
Var

[
X̄

(t)
a

]
+ Var[Tb→a]

= Φ−1

(
1− θt

2

)√
σ2
a

t
+ Var[Tb→a]

and 0, otherwise, where θt ∈ [0, 1] and t = tκb→a
. Addition-

ally, χ(t)
a (a; θt) = 1 always, and we set χ(t)

a (b; θt) = 1 before
agent a receives from agent b for the first time.

If we keep the last update, i.e., w1 = · · · = wκb→a−1 = 0

and wκb→a
= 1, the sum above becomes X̄

(tκb→a
)

b , which is
asymptotically Gaussian by the central limit theorem. But in
general, this decision rule leads to an asymptotically correct
estimate of the class Ca, even when asymptotic Gaussness
cannot be proved, but more general conditions are satisfied.

C. Algorithm
We summarize the proposed algorithm in Algorithm 1,

which is based on the linear statistic of Section III-A. The
crucial step that differentiates Algorithm 1 from the ColME
algorithm in [13, Alg. 1] is the design of a new decision
rule χ

(t)
a (b; δ) in Line 12, which is based on hypothesis

testing as outlined in Section III-B. Moreover, we consider
a more general linear statistic Tb→a in Line 10 (the ColME
algorithm corresponds to fixing the last weight wκb→a

equal
to one). The selection of an agent b to query is done ac-
cording to some schedule, e.g., round-robin (RR), denoted by
choose_agent. Finally, both Tb→a and C(t)a are updated
and the statistics Tb→a, for b ∈ C(t)a , are linearly combined
in Line 13 in order to obtain an improved estimate µ

(t)
a of

the mean of agent a at time step t. The linear combination
coefficients are optimized based on Lemma 2, i.e., selected
according to

α
(t)
b→a =


t

σ2
a

(∑
b′∈C(t)

a \{a}
1

Var[Tb′→a]
+ t

σ2
a

) if b = a,

1

Var[Tb→a]

(∑
b′∈C(t)

a \{a}
1

Var[Tb′→a]
+ t

σ2
a

) otherwise,

(3)
while in [13, Alg. 1] several different (heuristic) linear com-
bination schemes are considered.

From Line 13 of Algorithm 1 and Lemma 2 it follows that

Var
[
µ(t)
a

]
=

1∑
b′∈C(t)

a \{a}
1

Var[Tb′→a]
+ t

σ2
a

.

Algorithm 1: Private-ColME
Input: agent a
Output: µ(tmax)

a

1 ∀ b ∈ [M ] \ {a} : Tb→a ← 0, κb→a ← 0

2 C(0)a ← [M ]
3 for t = 1, 2, . . . , tmax do
4 // Receive

5 Receive sample X
(t)
a ∼ Da

6 X̄
(t)
a ← X̄

(t−1)
a × t−1

t +X
(t)
a × 1

t
7 // Query

8 b← choose agent
(
C(t−1)
a , [M ]

)
9 κb→a ← κb→a + 1

10 Tb→a ←
∑κb→a

i=1 wi

(
X̄

(ti)
b + Z

(ti)
b→a

)
11 // Estimate

12 C(t)a ← {b ∈ [M ] : χ
(t)
a (b; δ) = 1}

13 µ
(t)
a ← α

(t)
a→aX̄

(t)
a +

∑
b∈C(t)

a \{a} α
(t)
b→aTb→a

14 return µ
(tmax)
a

If there has been no values received from an agent b, we
assume as a convention that Tb→a = 0 and Var[Tb→a] = +∞.

D. Schedules
As mentioned above in Section III-C, the agents are queried

according to some schedule. In this work, we study a simple
RR schedule in which agents are queried in order of their
indices (but skipping the agent a itself). Additionally, we
consider a restricted RR (rRR) schedule in which the agents
are queried in the same order as in RR, but at any current time
step t the agents not in C(t−1)

a are skipped.

IV. PRIVACY

Below, we present two private release mechanisms giving
different trade-offs between the variance of the linear statistic
Tb→a (see Line 10 of Algorithm 1) and the overall privacy
level for each individual sample X(t)

b of agent b when releasing
noise-corrupted sample means to agent a.

Both mechanisms are based on the following idea, which
can be seen as a generalization of Lemma 1. To construct a
privatized version of X̄(t)

b for release to agent a, agent b splits
the corresponding sum of values with indices [1 : t] into κ
subsums (called p-sums in [16]) with indices [1 : τ1], [τ1 +1 :
τ2], . . . , [τκ−1 + 1 : t]:

X̄
(t)
b =

X
(1)
b + · · ·+X

(t)
b

t

=

∑τ1
i=1 X

(i)
b +

∑τ2
i=τ1+1 X

(i)
b + · · ·+

∑t
i=τκ−1+1 X

(i)
b

t
and adds independent noise with the same variance σ2

DP =
8L2 ln(1.25/δ)/ϵ2 to each of the subsums:∑τ1

i=1 X
(i)
b + Z

(1:τ1)
b→a

t
+

∑τ2
i=τ1+1 X

(i)
b + Z

(τ1+1:τ2)
b→a

t

+ · · ·+
∑t

i=τκ−1+1 X
(i)
b + Z

(τκ−1+1:t)
b→a

t
= X̄

(t)
b + Z

(t)
b→a,
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where all Z(1:τ1)
b→a , Z

(τ1+1:τ2)
b→a , . . . , Z

(τκ−1+1:t)
b→a are i.i.d. accord-

ing to N
(
0, σ2

DP

)
, and

Z
(t)
b→a ≜

1

t

κ∑
i=1

Z
(τi−1+1:τi)
b→a ∼ N

(
0, κσ

2
DP/t2

)
,

where τ0 = 0 and τκ = t. Note that the variance of the noise
Z

(t)
b→a depends only on the time of release, t, the number of

subsums in the split, κ, and the desired (ϵ, δ).
Similar to Lemma 1, this release mechanism provides (ϵ, δ)-

DP for each X
(1)
b , X(2)

b , . . . , X(t)
b . However, a subsum with

the corresponding noise can be re-used by the agent b further
for constructing privatized versions of the means X̄

(t′)
b for

t′ > t, thus reducing the amount of “fresh” noise added. If
for example (X

(1)
b +···+X

(τ1)

b +Z
(1:τ1)

b→a )/t is released several times
(with the same value of Z(1:τ1)

b→a ) as a subsum of different sums,
the privacy of each of the X

(1)
b , . . . , X

(τ1)
b stays the same.

The only difference between the two mechanisms below is
how we split into the subsums. In both mechanisms, if the
same subsum (i.e., with the same interval of indices) needs
to be used for the calculation of several privatized means by
agent b for release to agent a, we actually require that the
exact same value of noise is used for this subsum.

We stress here that in both mechanisms below, the RVs
Z

(t)
b→a are dependent for t = t1, t2, . . . , and the variance of

the linear statistic Tb→a, needed for the implementation of the
decision rule χ(t)

a (b; θt) and the computation of the coefficients
α
(t)
b→a in (3), depends on it and the weights {wi} used. An

analytical expression for the variance (specific to the weights
and the privacy mechanism) can be derived from (2), but is
omitted due to lack of space.

A. Privacy Mechanism I (PM-I)
This mechanism is inspired by the Simple Counting Mech-

anism II in [16]. The split of sums into subsums as above
now exactly corresponds to the times t1, t2, . . . when agent
b is queried by agent a, i.e., [1 : tκ] is split into [1 :

t1], [t1 + 1 : t2], . . . , [tκ−1 + 1 : tκ]. Hence, X̄(tκ)
b + Z

(tκ)
b→a =

X̄
(tκ)
b + 1/tκ

∑κ
i=1 Z

(ti−1+1:ti)
b→a , and Z

(tκ)
b→a ∼ N

(
0, κσ

2
DP/t2κ

)
.

Note that PM-I allows for efficient implementation by
the agent b. Indeed, it can keep only the current value
of

∑κ
i=1 Z

(ti−1+1:ti)
b→a . At the next release time t = tκ+1,

it updates this cumulative noise by adding “fresh” noise
Z

(tκ+1:tκ+1)
b→a and releases X̄(tκ+1)

b privatized with this updated
noise (divided by tκ+1). In particular, agent b does not need
to keep t1, . . . , tκ. Hence, agent b needs O(1) memory to
implement PM-I.

Since every X
(t)
b , 1 ≤ t ≤ tκ, participates in an exactly one

subsum (defined by the aforementioned split), PM-I allows
for a constant privacy level as we query agent b from agent
a, rather than getting weaker and weaker over time, while at
the same time having a decreasing DP noise variance due to
the factor κ/t2κ.

Lemma 3: Consider RR or rRR scheduling and an oracle
class estimator, i.e., C(t)a = Ca for all t. Next, let agent b
be the last agent queried by agent a in a single round. Then,
selecting w1 = · · · = wκb→a−1 = 0 and wκb→a

= 1 minimizes
the variance of Ta→b.

Hence, based on Lemma 3, keeping the last update (as
proposed in [13]) is a good strategy for PM-I.

B. Privacy Mechanism II (PM-II)

This mechanism is inspired by the Binary Counting Mech-
anism in [16]. When an agent b releases data to agent a for
the κ-th time (at time instant tκ), we construct the split into
subsums in two steps as follows. First, consider the same split
of [1 : tκ] into [1 : t1], [t1 + 1 : t2], . . . , [tκ−1 + 1 : tκ] as for
PM-I. Second, we now join the corresponding subsums into
larger subsums according to the binary representation of κ.
More precisely, let κ = 2s1 + 2s2 + · · ·+ 2swH(κ) , si > si+1,
be the unique representation of κ based on positions of ones
in the binary representation of κ.1 Then, we join the first 2s1
aforementioned subsums into the first larger subsum, the next
2s2 subsums into the second larger subsum, etc. In total, these
two steps result in splitting [1 : tκ] as follows:

[1 : t2s1 ] (first subsum),
[t2s1 + 1 : t2s1+2s2 ] (second subsum),
[t2s1+2s2 + 1 : t2s1+2s2+2s3 ] (third subsum),

...
[t2s1+2s2+···+2

swH(κ)−1 + 1 : tκ] (wH(κ)-th subsum).

Finally, we add independent noise with variance σ2
DP to each

of the corresponding subsums and construct the noisy mean
X̄

(tκ)
b + Z

(tκ)
b→a as previously. This mechanism gives Z

(tκ)
b→a ∼

N
(
0,wH(κ)σ2

DP/t2κ
)
.

The noise term Z
(tκ)
b→a has variance at most (⌊log2 κ⌋+1)/t2κ

times σ2
DP as wH(κ) ≤ ⌊log2 κ⌋+ 1. The variance is a factor

of at most (⌊log2 κ⌋+1)/κ of the variance of PM-I and this factor
approaches zero in κ. On the other hand, in contrast to PM-I,
a value X

(t)
b for 1 ≤ t ≤ tκ can be used in up to ⌊log2 κ⌋+1

different subsums. Therefore, from the composition theorem
of DP (see, e.g., [18, Thm. 3.1]), PM-II will give ((⌊log2 κ⌋+
1)ϵ, (⌊log2 κ⌋+1)δ)-DP with respect to each individual sample
X

(1)
b , . . . , X

(tκ)
b .

Compared to PM-I, the privacy parameters of this mecha-
nism grow with κ, and hence the privacy level gets weaker
over time. On the other hand, the DP noise variance decreases
faster with κ. As shown below in Section VI, this may result
in reaching a given target average mean squared error for a
given fixed overall privacy level faster in some scenarios. On
the other hand, in contrast to PM-I, agent b needs O(⌊log2 κ⌋)
memory to implement PM-II.

Interesting, keeping only the last update does not minimize
Var[Tb→a] as for PM-I (cf. Lemma 3). For this particular
mechanism we will illustrate in Section VI below that a
windowed MoM (wMoM) approach where w1 = · · · =
w2⌊log2 κb→a⌋−1 = 0 and w2⌊log2 κb→a⌋ = · · · = wκb→a

=
1/(κb→a−2⌊log2 κb→a⌋+1) performs better.

V. PERFORMANCE ANALYSIS

We first present the performance of a pure local approach
in which each agent a ∈ [M ] estimates its mean solely based

1E.g., if κ = 13 = 1101, we represent it as κ = 23 + 22 + 20.
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Fig. 1. Average mean squared error of Algorithm 1 with σ = 1/2. The left plot shows simulation results with RR and rRR scheduling for the case of
M = 200 agents forming three classes, with an overall privacy level of ϵ = 1 with δ = 10−6. The middle and right plots show the corresponding (analytical)
performance with an oracle class estimator and with RR scheduling for M = 200 and 30 agents, respectively. The curves are for uniform data and L = σ

√
3.

on its own data. For the local approach, the privacy is perfect
as there is no sharing of data.

Proposition 1 (Local): The average mean squared error of
a pure local approach is

1

M

∑
a∈[M ]

E
[(

µ(t)
a − µa

)2
]
=

1

Mt

∑
a∈[M ]

σ2
a.

It is good to understand the limits of what can be achieved.
If privacy is ignored, and agent a knows Ca and has access
to all the data of all the agents in Ca at time t, the agent a
virtually has one large sample of size |Ca|t (as opposed to
the sample of size t for the pure local approach). With this,
the average mean squared error is 1/Mt

∑
a∈[M ]

σ2
a

|Ca| and no
approach can perform better than this ideal performance.

The following theorem shows that the average mean squared
error from Algorithm 1 converges to zero as t→∞.

Theorem 1: Let 1/θt = o(et) and 1/θt →∞ as t→∞. For
any distributions Da, a ∈ [M ], for both PM-I and PM-II and
with both non-MoM and MoM weights, Algorithm 1 with RR
scheduling produces µ

(t)
a that is asymptotically unbiased and

1

M

∑
a∈[M ]

E
[(

µ(t)
a − µa

)2
]
→ 0 as t→∞.

VI. NUMERICAL RESULTS

We consider the case of M = 200 agents forming three
classes. The agents are placed uniformly at random within the
classes, giving roughly balanced class sizes. The agents’ data
distributions are uniform (to model tabular data) on a range
of size 2L = 2σ

√
3 (giving a standard deviation of σ), with

σ = 1/2, but with different class-dependent means; 1/5, 2/5, and
4/5, respectively, for the three classes. In order to have a fair
comparison between PM-I and PM-II, (ϵ, δ) of PM-II is scaled
by ⌊log2(tmax)⌋+1 so that both mechanisms provide the same
privacy level. For the decision rule, we use θt = 0.05/ln(t+1).

In Fig. 1 (left plot), we show simulation results for RR
and rRR scheduling in Algorithm 1 (with tmax = 3 · 104) for
both PM-I and PM-II with the MoM and non-MoM approach.
The overall privacy level is ϵ = 1 with δ = 10−6. As
expected, for PM-I the non-MoM approach outperforms the
MoM approach (cf. Lemma 3), while there is still some gap

to ideal performance. Moreover, PM-I with non-MoM weights
outperforms PM-II for the range of squared errors shown in the
plot. Note that RR performs better than rRR, which was not
the case when privacy is ignored (see [13, Fig. 1]). This can be
explained by the fact that sample means are released less often
with RR than with rRR (the gaps ti− ti−1 are larger for RR).
The collaborative schemes (ultimately) perform significantly
better than a pure local approach, while PM-II with non-MoM
weights and rRR scheduling being a notable exception; the
reason being that the decision rule type-I error increases over
time rather than converging to a close-to-zero value. In the
middle plot, the corresponding (analytical) performance with
an oracle class estimator and with RR scheduling is provided
which shows qualitatively the same behavior as in the left
plot. While PM-I performs better than PM-II for the range of
squared errors shown, asymptotically (for very low squared
errors) the curves will cross (not shown). Note that PM-
II with wMoM weights smoothens the corresponding curve
with non-MoM weights (the oscillations are due to the factor
wH(κ) in the variance of Z

(tκ)
b→a) and shows that having non-

MoM weights for PM-II is not optimal. Moreover, PM-II with
wMoM weights performs significantly better than a pure MoM
approach. In the right plot, we show the corresponding oracle
performance for M = 30. In contrast to the middle plot, PM-
II with wMoM weights shows the best performance for a low
squared error. On the other hand, compared to M = 200, the
performance gap to ideal performance is far larger.

VII. CONCLUSION

We presented a private collaborative algorithm for person-
alized mean estimation in an online setting where agents
continuously receive samples according to arbitrary unknown
distributions. An approach based on DP was proposed and
significant gains compared to a pure local approach where
the agents do not share their data were demonstrated. For a
considered scenario, the best scheme performs comparably to
an ideal scheme where all data is public. We also provided
a convergence analysis of the proposed algorithm. The com-
munication cost was not considered and its implication on the
accuracy/privacy will be studied next as future work.
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