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Abstract—We consider straggler resiliency in decentralized
learning using stochastic gradient descent under the notion
of network differential privacy (DP). In particular, we extend
the recently proposed framework of privacy amplification by
decentralization by Cyffers and Bellet to include training la-
tency—comprising both computation and communication la-
tency. Analytical results on both the convergence speed and the
DP level are derived for training over a logical ring for both a
skipping scheme (which ignores the stragglers after a timeout)
and a baseline scheme that waits for each node to finish before
the training continues. Our results show a trade-off between
training latency, accuracy, and privacy, parameterized by the
timeout of the skipping scheme. Finally, results when training a
logistic regression model on a real-world dataset are presented.

I. INTRODUCTION

In distributed learning, a finite-sum optimization problem

is solved across multiple nodes without exchanging the local

datasets directly, thus limiting the data privacy leakage. In

federated learning [1]–[3], there is a single node coordinating

the overall training process, while in decentralized learning,

see, e.g., [4], [5], there is no such coordinating central

server—the nodes maintain a local estimate of the optimal

model and iteratively updates it by averaging estimates ob-

tained from neighboring nodes corrected on the basis of their

local datasets. This can either be done sequentially by a token

that travels over the set of nodes and gets updated by each

node who receives it, or in parallel by several distinct tokens.

Theoretical studies show that the underlying communication

topology has a strong impact on the number of epochs needed

to converge [6].

Even though data stays local, the computed partial

(sub)gradients can leak information on the local datasets [7].

To address this shortcoming, a carefully selected noise term

can be added to the computed partial (sub)gradients before

they are transmitted to other nodes, referred to as local

differential privacy (LDP) [8], [9]. Recently, a novel relaxation

of LDP that naturally arises in decentralized learning, referred

to as network DP (NDP) was introduced [10], which captures

the fact that nodes have only a local view of the system. In

[10], the authors showed that the privacy-utility trade-off under

NDP can be significantly improved upon compared to what is

achievable under LDP, illustrating that formal privacy gains

can be obtained from full decentralization, complementing

previous notions of “amplifying” the privacy by shuffling,

subsampling, and iteration [11]–[14]. Differentially-private

decentralized learning has been considered in several previous

works, see, e.g., [5], [15], [16].

The impact of stragglers, i.e., nodes that take a long time to

finish their tasks due to random phenomena such as processes

running in the background, has been considered extensively in

the literature. A simple way to address the straggler problem

is to ignore results from the slowest nodes, see, e.g., [5], [17],

which can however lead to convergence to a local optimum

when the data is heterogeneous [18], [19]. To address this

shortcoming, coded computing methods have been proposed

in the literature, see, e.g., [20]–[29].

Straggler resiliency and the impact of user data privacy in

decentralized training has been studied separately, while this

work simultaneously studies both. In particular, we consider

sequential training along a logical ring and extend the recently

proposed framework of privacy amplification by decentral-

ization by Cyffers and Bellet [10] to include the overall

latency—comprising both computation and communication

latency—under stochastic gradient descent. In sequential train-

ing, nodes do not need to be active during the whole training

period, which makes it suitable for scenarios where the nodes

have limited resources, and therefore remain dormant unless

they are triggered to do an update. Specifically, we consider

a ring topology, where each node can only communicate with

its immediate neighbors upstream and downstream. Our main

contributions are summarized as follows.

• We derive analytical results on both the convergence

behavior (see Theorem 1) and the DP level (see The-

orems 2 and 3) for a skipping scheme (which ignores

the stragglers after a timeout) and a baseline scheme that

waits for each node to finish before the training continues,

for both a fixed and a randomized ring topology. Our

results reveal a trade-off parameterized by the timeout of

the skipping scheme.

• We determine the optimal timeout that minimizes the

time between two consecutive updates of the token, show-

ing that skipping is beneficial for faster convergence for

certain popular computational delay models considered

in the literature (see Lemma 2 and Section VI-B).

• We show that randomizing the processing order of nodes

on the ring provides an improvement in both convergence

behavior and privacy in the long run. Hence, random-

ization is capable of enhancing the privacy-convergence

tradeoff (see Section VI-A).

Finally, we present results for logistic regression on a real-

world dataset to validate our theoretical findings. Due to lack

of space, all proofs are omitted.
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II. PRELIMINARIES

A. Notation

We use uppercase and lowercase letters for random vari-

ables (RVs) and their realization (both scalars and vectors),

respectively, and italics for sets, e.g., X , x, and X represent a

RV, a scalar/vector, and a set, respectively. An exception to this

rule is τ which denotes the model description, also referred to

as the token. Matrices are denoted by uppercase letters, their

distinction from RVs will be clear from the context. Vectors

are represented as row vectors and the transpose of a vector

or a matrix is denoted by (·)⊤. The expectation of a RV X is

denoted by E [X]. We define [n] , {1, 2, . . . , n}, while N de-

notes the set of natural numbers and R the set of real numbers.

The (sub)gradient of a function f(x) is denoted by ∇f(x),
while the ℓp-norm of a length-n vector x = (x1, . . . , xn) ∈ R

n

is denoted by ‖x‖p = (
∑n

i=1 |xi|p)
1/p

, where | · | denotes

absolute value. The base of the natural logarithm is denoted by

e, while log denotes natural logarithm. N (µ, σId) denotes the

d-dimensional Gaussian (uncorrelated) distribution with mean

µ and standard deviation σ of each component, where Id is the

identity matrix of size d. X ∼ P denotes that X is distributed

according to the distribution P , while x ∼ P denotes a sample

x taken from the distribution P . We denote by D ∼u D′

the fact that datasets D = ∪v∈VDv and D′ = ∪v∈VD′
v are

the same except perhaps for the dataset of the user u, i.e.,

Dv = D′
v for all v 6= u, where V is some set of users. Standard

order notation O(·) is used for asymptotic results.

B. Definitions

Definition 1 (k-Lipschitz continuity). A function f :W → R

is k-Lipschitz continuous over the convex domain W ⊆ R
d if

|f(w)− f(w′)| ≤ k ‖w − w′‖2 for all w,w′ ∈ W .

Definition 2 (β-smoothness). A function f : W → R

is β-smooth over the convex domain W ⊆ R
d if

‖∇f(w)−∇f(w′)‖2 ≤ β ‖w − w′‖2 for all w,w′ ∈ W .

C. System Model

Consider a decentralized network of n honest-but-curious

nodes (users) V = {v1, . . . , vn} with a decentralized dataset

D = ∪v∈VDv where Dv =
{

(x
(v)
i , y

(v)
i )
}κ

i=1
, (x

(v)
i , y

(v)
i ) ∈

R ⊆ R
dx ×R

dy , for some set R and dx, dy ∈ N, and κ ∈ N,

is the private dataset of node v ∈ V .

The nodes want to compute some function together based on

their datasets but want to keep their datasets private. For that,

they employ a decentralized protocol where a token τ ∈ W ,

for some convex set W ⊆ R
d, travels between the nodes

according to some predefined (but potentially randomized)

path. When receiving the token the r-th time and the global

time is h, the node v updates it as τ ← g
(v)
r (τ ; statev(h)),

and sends it further. Here, statev(h) encapsulates all the

information available to the node v at time h, e.g., the available

data points and the results of previous calculations. It can

also include some source of randomness. We assume that the

computation in each node v during the r-th visit of the token

takes random time T
(v)
r . Hence, the computation of g

(v)
r (·, ·)

takes time at most T
(v)
r as the token may be updated before the

entire computation is finished.1 We consider a model where

T
(v)
r is comprised of a deterministic constant part (the time

it takes to perform an actual computation) and a random

part. Additionally, we assume that communication between

any two nodes is noiseless and takes constant time χ, and

hence the constant part of the computation time can be set

to zero without loss of generality. At the end of the protocol,

the token τ is distributed among all the nodes, which allow

them to calculate the desired result of joint computations. We

assume this final distribution takes constant overhead time and

we therefore ignore it in further derivations.

For a decentralized protocol A, we denote by

A(D) the (random) transcript of all messages sent

or received by all the users, i.e., A(D) equals

{(u,w, v) : u ∈ V sent a message with content w to v ∈ V}.
However, due to the decentralized nature of A, the user v
only has access to the subset of A(D) consisting of the

messages she sent or received, and we denote this view by

Ov(A(D)) = {(u,w, u′) ∈ A(D) : u = v or u′ = v}. For

notational convenience, we denote by Ω the set of all possible

views, i.e., Ov(A(D)) ∈ Ω for all possible parameters and

realizations.

D. Network Differential Privacy

We accept the notion of NDP introduced in [10].

Definition 3 (NDP [10]). A protocol A satisfies (ε, δ)-NDP if

for all pairs of distinct users u, v ∈ V , all pairs of neighboring

datasets D ∼u D′, and any S ⊆ Ω, we have

Pr[Ov(A(D)) ∈ S] ≤ eε Pr[Ov(A(D′)) ∈ S] + δ,

where the notion of neighboring datasets D ∼u D′ is defined

in Section II-A.

NDP measures how much the information collected by node

v depends on the dataset of node u. In the special case that all

nodes can observe all messages sent and received, i.e., Ov is

the identity map, NDP boils down to conventional LDP [31].

When processing information in a decentralized manner with

no central coordinating entity, and when there is no third party

(on top of the topology) observing all messages sent, NDP is

a more natural privacy measure than DP or LDP.

III. EMPIRICAL RISK MINIMIZATION

In this section, we consider the empirical risk minimization

problem

τ∗ = argmin
τ∈W⊆Rd

[

f(τ ;D) , 1

n

∑

v∈V
fv(τ ;Dv)

]

, (1)

where fv(τ ; ·) is a k-Lipschitz continuous convex function in

its first argument.

A. Skipping Scheme

We suggest the following protocol inspired by projected

noisy stochastic gradient descent to solve (1). The token

1The RVs T
(v)
r are assumed to be independent and identically distributed

(i.i.d.) which is in accordance with the literature, where typically stragglers
are generated uniformly at random, except for a few works, e.g., [21], [30]
that consider a model where a node that becomes a straggler tends to remain

a straggler for a long time, violating the i.i.d. assumption on the RVs T
(v)
r .
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Fig. 1. Illustrating the j-th round in which node vi is a straggler.

τ keeps the current estimate of the optimal point τ∗ and

follows a possibly randomized path over the available nodes

V . However, to speed up the process, the token waits up to a

threshold time tss and, if the computation has not finished by

that time, the token is forwarded further without an update.2

In our notation, it means that the calculation in each node v
is

g(v)r (τ ; statev(h))

=

{

ΠW (τ − ηh (∇fv(τ ;Dv) +Nh)) if T
(v)
r ≤ tss,

τ otherwise,
(2)

where ηh is the step size (learning rate), ΠW denotes the

Euclidean projection onto the set W , and Nh is noise with

zero mean and standard deviation σh. The noise Nh is added

in order to protect the privacy of the local datasets, and

the standard deviation σh is chosen so a certain level of

NDP is ensured.3 In this work, we consider both the gamma

distribution (including the exponential distribution) and the

Pareto type II (also known as Lomax) distribution for T
(v)
r ,

which are well-established models in the literature, see, e.g.,

[30], [32], [33]. Since we assume that the RVs T
(v)
r are i.i.d.,

we simplify the notation in the following by letting T ≡ T
(v)
r .

The algorithm stops when a predefined convergence require-

ment is fulfilled. We refer to the algorithm detailed above

as the skipping scheme with parameter tss, which can be

optimized in order to reduce either the convergence time

and/or the privacy leakage. In the special case of tss = ∞,

it reduces to a scheme for which the token always waits. We

denote by p = Pr[T > tss] the probability of skipping a

node. The formal algorithm is given in Algorithm 1, where

the output ℓ denotes its execution latency and τhmax the final

value of the token after hmax steps.

We use Algorithm 1 in two special cases as outlined below

and illustrated in Fig. 1. For both schemes, the noise variance

is fixed throughout the algorithm, i.e., σh = σ, ∀h, and we

assume, for simplicity, that hmax is a multiple of n in the rest

of the paper.

• First, we consider an update schedule in which the nodes

in V are processed along a logical ring, i.e., the node

path sequence of Algorithm 1 is (v(1), . . . , v(hmax)) =

2In a real implementation, acknowledgments can be used to identify
straggling nodes, e.g., when the token is forwarded to the next node in line
and no acknowledgment is received within a threshold time, the token is
forwarded to the second next node in line, etc.

3The noise is drawn from a Gaussian distribution with zero mean and

standard deviation σh =
k
√

8 log(1.25/δ)

ǫ
, where ǫ > 0 and 0 < δ < 1.

Algorithm 1: Skipping Scheme

Input: Datasets Dv and k-Lipschitz continuous convex

functions fv :W ×Rκ → R, v ∈ V , in the first

argument, noise standard deviation sequence

(σ1, . . . , σhmax), node path sequence

(v(1), . . . , v(hmax)), learning rate parameter ζ,

skipping parameter tss, number of steps hmax,

and communication latency χ
Output: (τhmax

, ℓ)
1 τ0 ← 0, ℓ← 0, c← 1
2 P ← Comp. lat. model (gamma or Pareto type II)

3 for h ∈ [hmax] do

4 t ∼ P
5 if t ≤ tss then

6 ηh ← ζ/
√
c

7 τh ←
ΠW (τh−1 − ηh (∇fv(h)(τh−1;Dv(h)) +Nh)),
where Nh ∼ N (0, σ2

hId)
8 ℓ← ℓ+ χ+ t, c← c+ 1
9 end

10 else

11 τh ← τh−1, ℓ← ℓ+ χ+ tss
12 end

13 end

14 return (τhmax
, ℓ)

((v1, . . . , vn), (v1, . . . , vn), . . . , (v1, . . . , vn)). The corre-

sponding scheme is denoted by SS-Ring.

• Second, we consider a randomized version of the logical

ring above. In particular, each round over the ring can

be seen as a random walk on the set of nodes, but

without replacement. For each round, the random walk

procedure is restarted. Hence, the node path sequence

becomes (v(1), . . . , v(hmax))

=
(

(vπ1(1), . . . , vπ1(n)), (vπ2(1), . . . , vπ2(n)),

. . . ,
(

vπhmax/n(1), . . . , vπhmax/n(n)

))

,

where π1, . . . , πhmax/n are random permutations over [n].
The scheme is denoted by SS-Rand-Ring.

B. Computation and Communication Latency

The average total latency of the skipping scheme in Algo-

rithm 1 is given by the following lemma.

Lemma 1. The expected total latency for the skipping scheme

in Algorithm 1 is

hmax

(

χ+

∫ tss

0

t dΦT (t) + tss
(

1− ΦT (tss)
)

)

,

where ΦT (t) , Pr[T ≤ t] and ΦT (tss) = 1− p.

If the number of hops hmax is large enough, we would

expect shorter times between token updates (all other proper-

ties being the same) to be beneficial for convergence. In other

words, expected time between two consecutive visits to Line 7

in Algorithm 1 should be minimized.4

4The number of hops between two consecutive updates follows the geo-
metric distribution with success probability 1− p.
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Lemma 2. The value of tss that minimizes the average time

between two consecutive updates of the token is given by the

solution of the optimization problem

argmin
tss

χ+
∫ tss
0

t dΦT (t) + tss
(

1− ΦT (tss)
)

ΦT (tss)
.

IV. CONVERGENCE ANALYSIS

Here, we provide a convergence result for the two con-

sidered schemes by adapting the classical convergence result

of [34, Thm. 2] to decentralized learning where nodes are

processed according to a Markov chain and for which the

(sub)gradient estimate in each step is biased, but converges

to unbiased exponentially fast, which are the main two new

technicalities of the proof.5 Additionally, the number of token

updates is random (depending on the skipping probability),

and we need to average over it.

Theorem 1. If the diameter of W is dW , the expected

difference between the minimum value f(τ∗; ·) and that from

Algorithm 1 with an arbitrary learning rate parameter ζ > 0
after hmax steps is bounded as

E [f(τhmax ; ·)− f(τ∗; ·)] ≤
hmax
∑

h=0

(

hmax

h

)

(1− p)hphmax−heh,

where ∀h > 0,

eh ,
(d2W + ζ2(k2 + dσ2))(2 + log(h+ 1))

ζ
√
h+ 1

+ dWk
√
n

(

1

h+ 1

h+1
∑

i=1

|λ1|i+
h
∑

j=1

1

j(j + 1)

h+1
∑

i=h+1−j

|λ1|i
)

and e0 , dWk, |λ1| = 1−p√
(1+p2)−2p cos( 2π

n )
and 0 < p <

1 for SS-Ring, while λ1 , 0 and 0 ≤ p < 1 for

SS-Rand-Ring.

Note that the upper bound of Theorem 1 is of order

O (E [logB/
√
B]), where B is a positive binomial RV with

probability mass function Pr [B = h] = 1
1−phmax

(

hmax

h

)

(1 −
p)hphmax−h, h ∈ [hmax], from which it can be proved (using

[37, Thm. 1]) that the asymptotic convergence rate equals

O
(

log(hmax)/
√
hmax

)

. This rate is the same as that of [34,

Thm. 2], while being a log(hmax)-factor worse compared to

[35, Thm. 1]. The latter is due to 1) the assumption that σh

decays to zero with h [35, Eq. (16)], and 2) that convergence

there is proved for the running average of the token.

Note that the asymptotic behavior of the bound in Theo-

rem 1 is the same for λ1 = 0 and λ1 > 0. Hence, a biased

(sub)gradient estimate that converges to unbiased exponen-

tially fast does not influence the asymptotic convergence rate.

V. PRIVACY ANALYSIS

In this section, we present results on the privacy level

of the skipping scheme for both updating schedules of the

5There are several previous works that provide convergence results for
Markov chain (noisy) stochastic gradient descent, e.g., [35], [36]. However,
all of these works require that σh decays to zero with h, which means a
significantly higher leakage of private data. The main technical contribution
of our result is the circumvention of this assumption. Note that, as in [34,
Thm. 2], fv , v ∈ V , is not required to be β-smooth or even k-Lipschitz
continuous, as we only need the (sub)gradients to be bounded (which follows
from k-Lipschitzness).

token outlined in Section III-A, i.e., for both a fixed and a

randomized logical ring on the set of nodes V . We highlight

here that compared to [10], that only considers a constant

learning rate and also a different randomized path (and no

fixed path), our results apply to a decreasing learning rate of

the form ηh = ζ/
√
h (as specified in Algorithm 1).

The proof evolves around upper bounding the Rényi diver-

gence between Ov(A(D)) and Ov(A(D′)), D ∼u D′, for any

distinct pair of users u, v, using tools (including a composition

theorem for Rényi DP [38, Prop. 1]) from the framework of

privacy amplification by iteration [14]. The resulting bound

can be transformed into a bound on NDP using [38, Prop. 3]

and further optimized. Allowing for a decreasing learning rate

constitutes the main technical contribution of the proof.

We first consider the SS-Ring scheme. The privacy level

εss after a certain number of hmax/n rounds of the token is

given by the following theorem.

Theorem 2. Assume fv , v ∈ V , is β-smooth, and let ε > 0
and 0 < δ < 1. Then, the SS-Ring scheme on a ring with n
nodes and with learning rate parameter 0 < ζ ≤ 2/β achieves

(εss, δ + δ′)-NDP for all δ′ ∈ (0, 1] with

εss = ε

√

h̃ log(1/δ)
√

log(1.25/δ)
+

ε2h̃

4 log(1.25/δ)
,

where
h̃ ,

⌈

hmax(1−p)/n +
√

3hmax(1−p)/n log (1/δ′)
⌉

,

and 0 ≤ p < 1 is the probability of skipping a node.

The following theorem characterizes the privacy level εss
of the SS-Rand-Ring scheme.

Theorem 3. Assume fv , v ∈ V , is β-smooth, and let ε > 0
and 0 < δ < 1. Then, the SS-Rand-Ring scheme on a ring

with n nodes and with learning rate parameter 0 < ζ ≤ 2/β
achieves (εss, δ + δ′)-NDP for all δ′ ∈ (0, 1] with

εss =
ε2aα

2 log(1.25/δ)
+

log(1/δ)

α− 1
,

where

a ,
1

n− 1

h̃−1
∑

r=0

n−1
∑

d=1

d
∑

h=1

h
(

d
h

)

pd−h(1− p)h

γr,h
,

γr,h , 4(1 + r · h) ·
(√

1 + r · h+ h−
√
1 + r · h

)2

,

h̃ ,

⌈

hmax(1−p)/n +
√

3hmax(1−p)/n log (1/δ′)
⌉

,

α , min





√
2 log(1/δ) log(1.25/δ)

ε
√
a

+ 1,
1+

√

16 log(1.25/δ)
ε2

+1

2



,

and 0 ≤ p < 1 is the probability of skipping a node.

VI. NUMERICAL RESULTS

Here, we first perform a comparison based on the analytical

results from Sections IV and V, before turning to training a

logistic regression model using the dataset in [39].

A. Convergence Versus Privacy

For fixed values of n = 10, ε = 1, δ = 10−6, δ′ = 1/10, d =
8, dW = 10, k = 1, ζ = 3/100, and χ = 1/100, the upper plots

of Fig. 2 show the privacy level εss (obtained from Theorems 2

2022 IEEE Information Theory Workshop (ITW)
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Fig. 2. Upper plots: privacy level εss (bounds from Theorems 2 and 3) versus expected error in function minimization (bound from Theorem 1) for
different computation latency models. Lower plots: logistic regression model training, showing accuracy (on the test set) as a function of average latency
from Lemma 1. Each curve is an average of 100 independent runs. Upper and lower plots: solid lines are for a fixed ring (SS-Ring), while dashed lines
are for SS-Rand-Ring.

and 3) versus the expected error in function minimization (the

bound from Theorem 1), parameterized by the average latency

(Lemma 1), which increases toward the upper left corner. We

consider the latency models: exponential with mean 1, gamma

with shape 1/4 and scale 1, and Pareto type II with shape 3
and scale 2 (as used in [33]). The probability of skipping

p = Pr[T > tss] ∈ {10−4, 1/2, 7/10}, since p = 10−4 and 7/10
are close to the values of p given by Lemma 2, respectively 0
and 0.710/0.737 for the exponential and gamma/Pareto delay

models, while p = 1/2 is a value in between.

As can be seen from the figure, the trade-offs look similar

for all latency models considered. SS-Rand-Ring gives bet-

ter trade-off curves (especially for p = 10−4, i.e., virtually no

skipping) for smaller values of error in function minimization,

while the situation changes for higher values of error (i.e., at

the initial stages of Algorithm 1’s execution). Hence, path

randomization improves the trade-off in the long run, but

might be harder to realize in a real-world implementation as

it would require a full mesh topology.

On the contrary, the SS-Ring curve for p = 10−4 is the

worst, which means that skipping helps. Also, there is not

much difference between the SS-Ring curves for p = 1/2
and p = 7/10 (they are are almost on top of each other and

hence difficult to distinguish). Therefore, one should choose

the timeout based on faster convergence (cf. Lemma 2). On

the other hand, SS-Rand-Ring favors smaller values of p
(i.e., larger timeout) at the expense of a higher training latency

as shown in the next subsection.

B. Empirical Results

We consider training a logistic regression model. For lo-

gistic regression the local loss functions are fv(τ,Dv) =
1/|Dv|

∑

(x,y)∈Dv
log(1+e−yτx⊤

), where x ∈ R
d (dx = d) and

y ∈ {−1, 1} (dy = 1). We use a binarized version of the UCI

housing dataset [39]. The features are standardized and we

further normalize each data point to have unit ℓ2-norm so that

the loss functions fv(τ ;Dv) are 1-Lipschitz continuous (i.e.,

k = 1). The dataset is split uniformly at random into a training

set with 80% of the data points and a test set with 20% of the

points. Moreover, the training dataset is further randomly split

across the n = 10 nodes in V . We used the SS-Rand-Ring

scheme with the same parameters as in Section VI-A, but

using a mini-batch implementation with batches of size 100
in order to speed up the learning. The chosen mini-batch size

is a compromise between the two corner cases: a mini-batch

size of 1 is difficult to parallelize, whereas a large mini-batch

size may exceed the nodes’ limited parallelization capabilities.

The results of the resulting training are shown in the bottom

plots in Fig. 2, which show the test accuracy, i.e., the ratio

of correct predictions on the test set, versus average latency

from Lemma 1 for the same skipping probabilities as in the

corresponding upper plots. We observe that skipping achieves

a clear speed-up compared to no skipping, except for the

exponential delay model, as predicted well by Lemma 2.

However, as can be seen from the upper plots, no skipping

provides a slightly higher privacy for the SS-Rand-Ring

scheme.

2022 IEEE Information Theory Workshop (ITW)



REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y
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