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Abstract— We consider the problem of private polynomial
computation (PPC) from a distributed storage system (DSS).
In such setting a user wishes to compute a multivariate poly-
nomial of degree at most g over f variables (or messages)
stored in n noncolluding coded databases, i.e., databases storing
data encoded with an [n, k] linear storage code, while revealing
no information about the desired polynomial evaluation to the
databases. For a DSS setup where data is stored using linear
storage codes, we derive an outer bound on the PPC rate, which
is defined as the ratio of the (minimum) desired amount of infor-
mation and the total amount of downloaded information, and
construct two novel PPC schemes. In the first scheme, we consider
Reed-Solomon coded databases with Lagrange encoding, which
leverages ideas from recently proposed star-product private
information retrieval and Lagrange coded computation. The
second scheme considers the special case of coded databases
with systematic Lagrange encoding. Both schemes yield improved
rates, while asymptotically, as f → ∞, the systematic scheme
gives a significantly better computation retrieval rate compared
to all known schemes up to some storage code rate that depends
on the maximum degree of the candidate polynomials.

Index Terms— Coded computation, information-theoretic
privacy, private computation, private information retrieval,
Reed-Solomon codes.

I. INTRODUCTION

PRIVATE computation (PC) is a recently proposed general-
ization of the private information retrieval (PIR) problem.

PIR is the problem of obtaining an arbitrary message stored
in a public database without revealing the identity of the
requested message to the database. The notion of PIR was
studied in the computer science community for several decades
(see, e.g., [2]–[4]) and has been revisited by information
theorists with a focus on reducing the storage overhead while
ensuring information-theoretic privacy guarantees and a low
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download cost (see, e.g., [5]–[12]). PC addresses the com-
putation of functions over the stored messages [13]–[25], also
denoted as private function retrieval [14]. In PC, a user intends
to compute a function of the messages stored in a number of
databases forming a distributed storage system (DSS). This
function is to be kept private from the databases, as they
may be under the control of an adversary. In this line of
research, the main performance metric is the PC rate which
is defined as the ratio of the (minimum) desired amount of
information and the total amount of downloaded information.
Accordingly, the PC capacity is defined as the maximum
of all achievable PC rates over all possible PC protocols.
In [13], [14], the notion of PC is introduced for noncolluding
replicated databases. In these works, the capacity and achiev-
able PC rates for privately computing a given linear function,
called private linear computation (PLC), were derived as a
function of the number of messages and the number of data-
bases, respectively. Interestingly, the obtained PLC capacity
is shown to be equal to the PIR capacity of [7]. Recently,
the special case of PLC from a single server with side
information available at the user is considered in [21], [22].
In these works, the authors derived the capacity of PLC with
both coded and uncoded side information under two different
privacy conditions on the identities of the messages involved
in the desired computation. Finally, a different approach to
PLC, private sequential function computation, is introduced
in [23] and [24]. The authors consider the case where the
user is interested in the computation of a function formed
by a specific concatenation and combination of several linear
functions while keeping the order of the combination private
from a replication-based DSS. For the case of nonlinear
function computations, private monomial computation (PMC)
for replicated noncolluding databases was addressed in [25]
where the PMC capacity for an asymptotically large field
size and under a mild technical condition on the size of the
base field was derived. The technical condition on the size of
the base field can be shown to be satisfied for a sufficiently
large base field. The PC capacity for the case where the
candidate functions evaluations are the stored messages plus
the evaluation of an arbitrary nonlinear function of them was
derived in [19].

The extension of PC to coded DSSs, where the data
is encoded by an [n, k] linear code and then distributed
over n storage nodes [26], is addressed in [16]–[18], [20].
In particular, in [17] we proposed a PLC scheme from
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maximum distance separable (MDS) coded DSSs. In [18],
we settled the PLC capacity and provide a capacity-achieving
scheme for a class of linear storage codes considered in [12].
The PLC capacity is shown to match the MDS-coded PIR
capacity established in [8], referred to as the MDS-PIR
capacity. Moreover, the scheme presented in [18] extends the
optimal PIR scheme for coded DSSs in [12] and our PLC
scheme from MDS-coded DSSs in [17], strictly generalizing
the replication-based PLC schemes of [13], [14]. In [16],
private polynomial computation (PPC) over t colluding and
systematically coded databases is considered by generalizing
the star-product PIR scheme of [10]. An alternative PPC
approach from Reed-Solomon (RS) coded databases with
Lagrange encoding, was recently proposed in [20]. For low
code rates, the scheme improves on the PC rate of [16].
However, for the case of PC of nonlinear functions from
noncolluding databases, capacity results for linearly-coded
DSSs have not been addressed so far in the open literature
to the best of our knowledge.

As a step in this direction, in this work, we consider
PPC from noncolluding coded DSSs, propose two novel PPC
schemes, and derive an outer bound on the PPC rate over
all possible PPC protocols. Our contributions are outlined as
follows.
• We adapt the converse proof of [18, Thm. 2] to the coded

PPC problem and derive an outer bound on the PPC rate
from a DSS encoded with a class of linear storage codes
known as MDS-PIR capacity-achieving codes [12] (see
Theorem 1).

• In [20], the authors were mainly concerned with construct-
ing PPC schemes with a focus on preserving privacy against
colluding DSSs. We, on the other hand, aim our attention at
providing PPC solutions that minimize the download cost
and we focus on establishing the capacity of the PPC setup.
Towards that aim, we propose two new PPC schemes from
RS-coded DSSs (one for systematic encoding) by generaliz-
ing our previous work on a capacity-achieving PLC scheme
in [18] and leveraging ideas from star-product PIR [10] and
Lagrange coded computation [27]. Our schemes improve on
the rates of the PPC schemes presented in [16], [20] (see
Theorems 2 and 3). The systematic scheme is an improved
version of the systematic scheme presented in [1].

• To demonstrate the performance of our proposed PPC
schemes, numerical results are presented. We show that,
compared to the schemes in [16], [20], both proposed PPC
schemes yield a larger PC rate, i.e., lower download cost,
when the number of messages is small. As the number
of messages tends to infinity, the achievable rate of our
RS-coded (nonsystematic) PPC scheme approaches the rate
of [20] (see Corollary 1), while our systematic scheme
outperforms all known schemes up to some storage code
rate that depends on the maximum degree of the candidate
polynomials (see Remark 4 and Corollary 2).

II. PRELIMINARIES

A. Notation

We denote by N the set of all positive integers and let N0 �
{0} ∪ N, [a] � {1, 2, . . . , a}, and [a : b] � {a, a + 1, . . . , b}

Fig. 1. System model for PPC from an [n, k] coded DSS storing f messages.

for a, b ∈ N, a ≤ b. A random variable is denoted by a
capital Roman letter, e.g., X , while its realization is denoted
by the corresponding small Roman letter, e.g., x . Vectors are
boldfaced, e.g., X denotes a random vector and x denotes
a deterministic vector, respectively. The notation X ∼ Y is
used to indicate that X and Y are identically distributed.
Random matrices are represented by bold sans serif letters,
e.g., X, where X represents its realization. In addition, sets
are denoted by calligraphic uppercase letters, e.g., X , and
X c denotes the complement of a set X in a universe set.
We denote a submatrix of X that is restricted in columns by
the set I by X|I . For a given index set S, we also write
XS and YS to represent

{
X(v) : v ∈ S} and

{
Y j : j ∈ S},

respectively. Furthermore, some constants and functions are
also depicted by Greek letters or a special font, e.g., X. The
function H(X) represents the entropy of X , and I (X ;Y ) the
mutual information between X and Y . The binomial coefficient
of a over b, a, b ∈ N0, is denoted by

(a
b

)
where

(a
b

) = 0 if
a < b. The notation �·� denotes the floor function.

We use the customary code parameters [n, k] to denote
a code C over the finite field Fq of blocklength n and
dimension k. A generator matrix of C is denoted by GC .
A set of coordinates of C , I ⊆ [n], of size k is said to be an
information set if and only if GC |I is invertible. (·)T denotes
the transpose operator, while rank (V) denotes the rank of a
matrix V. The function χ(x) denotes the support of a vector
x, and the linear span of a set of vectors {x1, . . . , xa}, a ∈ N,
is denoted by span{x1, . . . , xa}. Finally, Fq [z] denotes the set
of all univariate polynomials over Fq in the variable z, and we
denote by deg (φ(z)) the degree of a polynomial φ(z) ∈ Fq [z].

B. Problem Statement and System Model

The PPC problem for coded DSSs is described as follows.
We consider a DSS that stores in total f independent messages
W(1), . . . ,W( f ), where each message symbol W (m)

1 , . . . ,W (m)
L

is chosen independently and uniformly at random from Fq .

Thus, H(W(m)) = L, ∀m ∈ [ f ] (in q-ary units). Let L � βk,
for some β, k ∈ N. The DSS stores the f messages encoded
using an [n, k] code as follows. Shown in Fig. 1, first, the
symbols of each message W(m), m ∈ [ f ], are presented as
a β × k matrix, i.e., W(m) = (

W (m)
i, j

)
, i ∈ [β], j ∈ [k].
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Let W (m)
i = (

W (m)
i,1 , . . . ,W (m)

i,k

)
, i ∈ [β], denote a mes-

sage vector corresponding to the i -th row of W(m). Second,
each W (m)

i is encoded by an [n, k] code C over Fq into
a length-n codeword C(m)

i = (
C(m)

i,1 , . . . ,C(m)
i,n

)
. The β f

generated codewords C(m)
i are then arranged in the array

C = (
(C(1))T| . . . |(C( f ))T

)T of dimensions β f × n, where

C(m) = (
(C(m)

1 )T| . . . |(C(m)
β )T

)T. Finally, the code symbols

C(m)
1, j , . . . ,C(m)

β, j , m ∈ [ f ], for all f messages are stored on
the j -th database, j ∈ [n].

In PPC from n noncolluding databases, a user wishes to pri-
vately compute exactly one function image X (v)l � φ(v)(W l),
where W l = (W (1)

l , . . . ,W ( f )
l ), ∀ l ∈ [L], out of μ

arbitrary candidate polynomials φ(1), . . . , φ(μ) : F
f
q → Fq

from the coded DSS. Let X(v) = (
X (v)1 , . . . , X (v)L

)
, where

X (v)1 , . . . , X (v)L are independent and identically distributed
according to a prototype random variable X (v) with probability
mass function PX (v) . Thus, H(X(v)) = LH(X (v)), ∀ v ∈ [μ],
H(X(1), . . . ,X(μ)) = LH(X (1), . . . , X (μ)), and we let Hmin �
minv∈[μ]H(X (v)) and Hmax � maxv∈[μ]H(X (v)). The user
selects an index v ∈ [μ] and wishes to compute the v-th
polynomial while keeping the requested polynomial index v
private from each database. Here, without loss of generality,
we also assume that the polynomial candidate set contains
its monomial basis, i.e., all monomials required to represent
the polynomials in the candidate set as linear combinations
of monomials, are included in the candidate set. In order
to retrieve the desired polynomial evaluation X(v), v ∈ [μ],
from the coded DSS, the user sends a query Q(v)

j to the j -th
database for all j ∈ [n] as illustrated in Fig. 1. The queries
are generated by the user without any prior knowledge of
the realizations of the candidate polynomials, consequently,
they are independent of the candidate polynomials evaluations.
In other words, we have

I
(
X(1), . . . ,X(μ) ;Q(v)

1 , . . . , Q(v)
n

)
= 0, ∀ v ∈ [μ].

In response to the received query, database j generates the

answer A(v)j as a deterministic function of Q(v)
j and the data

stored in the database, and then sends it back to the user. Let
C j �

(
C(1)

1, j , . . . ,C(1)
β, j ,C(2)

1, j , . . . ,C( f )
β, j

)T denote the f coded

chunks that are stored in the j -th database. Thus, ∀ v ∈ [μ],
H
(

A(v)j

∣∣∣ Q(v)
j ,C j

)
= 0, ∀ j ∈ [n].

To guarantee user privacy, in an information-theoretic sense,
the query-answer function must be identically distributed for
each possible desired polynomial index v ∈ [μ] from the
perspective of each database j ∈ [n]. In other words, the
scheme’s queries and answer strings must be independent from
the desired polynomial index, therefore, revealing no informa-
tion about the identity of the desired polynomial evaluation.
Moreover, the user must be able to reliably decode the desired
polynomial evaluation X(v). Accordingly, we define a PPC
protocol for an [n, k] coded DSSs as follows.

Consider a DSS with n noncolluding databases storing f
messages using an [n, k] code. The user wishes to retrieve the

v-th polynomial evaluation X(v), v ∈ [μ], from the available
information Q(v)

j and A(v)j , j ∈ [n]. For a PPC protocol, the
following conditions must be satisfied ∀ v, v � ∈ [μ], v �= v �,
and ∀ j ∈ [n],

[Privacy] (Q(v)
j , A(v)j ,X

[μ]) ∼ (Q(v �)
j , A(v

�)
j ,X[μ]), (1a)

[Recovery] H
(
X(v)

∣∣ A(v)1 , . . . , A(v)n , Q(v)
1 , . . . , Q(v)

n

) = 0.

(1b)

From an information-theoretic perspective, the efficiency of
a PPC protocol is measured by the PPC rate, which is defined
as follows.

Definition 1 (PPC Rate and Capacity for Linearly-Coded
DSSs): The exact information-theoretic rate of a PPC scheme,
denoted by R, is defined as the ratio of the minimum desired
function size LHmin over the total required download cost,
i.e., R � LHmin/D, where D is the total required download
cost. The PPC capacity CPPC is the maximum of all achievable
PPC rates over all possible PPC protocols for a given [n, k]
storage code.

C. Background

A monomial zi in m variables z1, . . . , zm with degree g is
written as zi = zi1

1 zi2
2 · · · zim

m , where i � (i1, . . . , im) ∈ N
m
0

is the exponent vector with wt(i) �
∑m

j=1 i j = g. The set
{zi : i ∈ N

m
0 , 1 ≤ wt(i) ≤ g} of all monomials in m variables

of degree at most g has size Mg(m) �
∑g

h=1

(h+m−1
h

) =(g+m
g

)− 1. Moreover, a polynomial φ(z) of degree at most g

is represented as φ(z) = ∑
i :wt(i)≤g ai z i , ai ∈ Fq . The total

number of polynomials in m variables of degree at most g
generated with all possible distinct (up to scalar multiplication)
Mg(m)-dimensional coefficients vectors defined over Fq is
equal to μg(m) �

(
qMg(m) − 1

)
/(q − 1).

Definition 2 (Star-Product): Let C and D be two linear
codes of length n over Fq . The star-product (Hadamard
product) of v = (v1, . . . , vn) ∈ C and u = (u1, . . . , un) ∈ D
is defined as v � u = (v1u1, . . . , vnun) ∈ F

n
q . Further, the

star-product of C and D , denoted by C � D , is defined by
span{v � u : v ∈ C , u ∈ D} and the g-fold star-product of
C with itself is given by C �g = span{v1 � · · · � vg : vi ∈ C ,
i ∈ [g]}.

Definition 3 (RS Code): Let α = (α1, . . . , αn) be a vector
of n distinct elements of Fq . For n ∈ N, k ∈ [n], and q ≥ n,
the [n, k] RS code (over Fq) is defined as

RSk(α) � {(φ(α1), . . . , φ(αn)) : φ ∈ Fq [z], deg (φ) < k}.
(2)

It is well-known that RS codes are MDS codes that behave
well under the star-product. We state the following proposition
that was introduced in [10].

Proposition 1: Let RSk(α) be a length-n RS code. Then,
for g ∈ N, the g-fold star-product of RSk(α) with itself is the
RS code given by RS�g

k (α) = RSmin {g(k−1)+1,n}(α).
Let γ = (γ1, . . . , γk) be a vector of k distinct elements of

Fq . For a message vector W = (W1, . . . ,Wk), let �(z) ∈ Fq [z]
be a polynomial of degree at most k− 1 such that �(γi ) = Wi
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for all i ∈ [k]. Using the Lagrange interpolation formula we
present this polynomial as �(z) =∑

i∈[k] Wi ιi (z), where ιi (z)
is the Lagrange basis polynomial

ιi (z) =
∏

t∈[k]\{i}

z − γt

γi − γt
.

It was shown in [20] that Lagrange encoding is equivalent
to the choice of a specific basis for an RS code. Therefore, for
encoding we choose the set of Lagrange basis polynomials as
the code generating polynomials of (2) [27]. Thus, a generator
matrix of RSk(α) is GRSk (α, γ ) = (ιi (α j )), i ∈ [k], j ∈ [n].
Note that if we choose γi = αi for i ∈ [k], then the generator
matrix GRSk (α, γ ) becomes systematic.

In [12], a PIR protocol for any linearly-coded DSS that
uses an [n, k] code to store f messages, named Protocol 1,
is proposed. The PIR rate of Protocol 1 can be derived by
finding a PIR achievable rate matrix of the underlying storage
code C , which is defined as follows.

Definition 4 ([12, Def. 10]): Let C be an arbitrary [n, k]
code. A ν × n binary matrix �PIR

κ,ν (C ) is said to be a PIR
achievable rate matrix for C if the following conditions are
satisfied.

1) The Hamming weight of each column of �PIR
κ,ν is κ , and

2) for each matrix row λi , i ∈ [ν], χ(λi ) always contains
an information set.

In other words, each coordinate j of C , j ∈ [n], appears
exactly κ times in {χ(λi )}i∈[ν], and every set χ(λi ) contains
an information set.

This gives rise to the following definition.
Definition 5 ([12, Def. 13]): Given an [n, k] code C , if a

PIR achievable rate matrix �PIR
κ,ν (C ) with κ/ν = k/n exists,

then the code C is referred to as an MDS-PIR capacity-
achieving code, and the matrix�PIR

κ,ν (C ) is called an MDS-PIR
capacity-achieving matrix.

Note that the class of MDS-PIR capacity-achieving codes
includes MDS codes, cyclic codes, Reed-Muller codes,
and certain classes of distance-optimal local reconstruction
codes [12].

III. CONVERSE BOUND

In [18], the PLC capacity for a coded DSS using an
MDS-PIR capacity-achieving code is shown to be equal to
the MDS-PIR capacity. In this section, we derive an outer
bound on the PPC rate (Theorem 1 below) by adapting the
converse proof of [18, Thm. 2] to the scenario of the linearly-
coded PPC problem, where the storage code is MDS-PIR
capacity-achieving. We first define an effective rank for the
PPC problem as follows.

Definition 6: Let X[μ] = {X(1), . . . ,X(μ)} denote the
set of candidate polynomials evaluations where X(�) =(
X (�)1 , . . . , X (�)L

)
, � ∈ [μ]. The effective rank r

(
X[μ]

)
is

defined as

r
(
X[μ]

)
� min

{
s : H

(
X (�1)

l , . . . , X (�s )
l

) = H
(
X [μ]l

)
,

{�1, . . . , �s} ⊆ [μ], s ∈ [μ], ∀ l ∈ [L]}, (3)

and we define the set L � {�1, . . . , �r } ⊆ [μ] to be a minimum
set that satisfies (3).1

Accordingly, an upper bound on the capacity of PPC for
a coded DSS where data is encoded and stored using an
MDS-PIR capacity-achieving code introduced in Definition 5,
is stated as follows.

Theorem 1: Consider a DSS with n noncolluding databases
that uses an [n, k] MDS-PIR capacity-achieving code C to
store f messages. Then, the maximum achievable PPC rate
over all possible PPC protocols, i.e., the PPC capacity CPPC,
is upper bounded by

CPPC ≤ Hmin

H
(B)
min +

∑r−1
v=1

( k
n

)v
H
(
X (�v+1)

∣∣ X (�1), . . . , X (�v )
) ,

for any effective rank r
(
X[μ]

) = r , where H
(B)
min �

min�∈L H
(
X (�)

)
.

Here, we remark that Theorem 1 generalizes [15, Thm. 1],
which is a converse bound on the capacity of dependent
PIR (DPIR) for noncolluding replicated databases.

Remark 1: Restricting the candidate set to degree g = 1
polynomials reduces the PPC problem to a PLC problem
where there is a deterministic linear mapping Vμ× f between
the μ functions evaluations and the f information messages.
Thus, the effective rank given in Definition 6 becomes the
rank of said mapping, i.e., r = rank

(
Vμ× f

)
. Moreover, the

candidate functions evaluations with indices from the set L =
{�1, . . . , �r } that satisfies (3) are independent and identically
distributed according to a uniform distribution [18, Lem. 3].
As a result, for v ∈ [r − 1] we have H

(
X (�v+1)

∣∣ X {�1,...,�v }) =
H
(
X (�v+1)

) = 1, H
(B)
min = Hmin = 1, and the capacity of

PLC [18, Thm. 2] follows.
Accordingly, the proof of Theorem 1 is an extension to our

converse proof of PLC in [18] and is presented in Appendix A.
Remark 2: Note that the converse bound of Theorem 1 is

generally difficult to compute for a large number of can-
didate polynomials. However, it is worth mentioning that
there are two cases where the computation of the converse
bound is straightforward. Namely, the case of the candidate
functions being from the linear polynomials class, follow-
ing Remark 1, and the case where the set of μ candidate
polynomials evaluations includes the f independent files, i.e.,
{W(1), . . . ,W( f )} ⊂ {X(1), . . . ,X(μ)}. For this case, the rank
of the candidate functions set is simply r = f as all the
remaining candidate polynomials evaluations are a function of
these f files and no other smaller subset captures the value
of the joint entropy H

(
X [μ]l

)
of (3). Since these f files are

independent and uniformly distributed, computing the capacity
bound reduces to computing only the minimum entropy.

IV. GENERAL PPC SCHEME FOR RS-CODED DSSS

In the following, we build PPC schemes based on Lagrange
encoding and our PLC scheme in [18]. Note that a polynomial

1There always exists a subset {�1, . . . , �s } ⊆ [μ] that satisfies the joint
entropy condition of (3). For the case where the candidate functions result in
independent functions evaluations, this set is the set of all function evaluations,
i.e., r = μ. Moreover, we naturally assume that r > 1, as μ > 1 and f > 1.
Otherwise, the problem becomes trivial in the sense that there is only one
candidate message/computation to retrieve.
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can be written as a linear combination of monomials, and
therefore PMC is a special case of PPC. Thus, a PPC scheme
can be obtained from a PLC scheme by replacing independent
messages with a monomial basis. We first discuss the PPC
case in general in the following scheme. In RS-coded DSSs,
each message vector W (m)

i is encoded by an RS code RSk(α)
with evaluation vector α = (α1, . . . , αn) over Fq into a
length-n codeword C(m)

i where C(m)
i = W (m)

i GRSk (α, γ ) =(
C(m)

i,1 , . . . ,C(m)
i,n

)
and C(m)

i, j = �(α j ), j ∈ [n]. Consider
an RS-coded DSS with n noncolluding databases storing f
messages. The user wishes to retrieve the v-th polynomial
evaluation X(v), v ∈ [μ], from the available information from
queries Q(v)

j and answer strings A(v)j , j ∈ [n], satisfying
conditions (1a) and (1b).

A. Lagrange Coded Computation

Lagrange coded computation [27] is a framework that can
be applied to any function computation when the function
of interest is a multivariate polynomial of the messages.
We extend the application of this framework to PMC and PPC
by utilizing the following argument.

Let �(m)t (z) be the Lagrange interpolation polynomial asso-
ciated with the length-k message segment W (m)

t for some
t ∈ [β] and m ∈ [ f ]. Recall that �(m)t (z) evaluated at γ j results
in an information symbol W (m)

t, j and when evaluated at α j we

obtain a code symbol C(m)
t, j . Let �t (z) = (�(1)t (z), . . . , �( f )

t (z))
be a vector of f Lagrange interpolation polynomials associated

with the messages W (1)
t , . . . ,W ( f )

t . Now, given a multivariate
polynomial φ(W t, j ) of degree at most g, where W t, j �(
W (1)

t, j , . . . ,W ( f )
t, j

)T, we introduce the composition function
ψt (z) = φ(�t (z)). Accordingly, evaluating ψt (z) at any γ j ,
j ∈ [k], is equal to evaluating the polynomial over the
uncoded information symbols, i.e., φ(W t, j ) and similarly,
evaluating ψt (z) at α j , j ∈ [n], will result in the evaluation of
the polynomial over the coded symbols, i.e., φ(C t, j ), where
C t, j �

(
C(1)

t, j , . . . ,C( f )
t, j

)T. Since each Lagrange interpolation
polynomial of �t (z) is a polynomial of degree at most k − 1,
it follows that deg (ψt (z)) ≤ g(k − 1) and we require up
to g(k − 1) + 1 coefficients to interpolate and determine the
polynomial ψt (z).

Note that ψt (z) is a linear combination of monomials
zi ∈ Fq[z], i ≤ g(k − 1), and the underlying code C̃ for
(ψt (α1), . . . , ψt (αn)), referred to as the polynomial decoding
code, is given by the g-fold star-product RS�g

k (α) of the stor-
age code RSk(α) according to [20, Lem. 6]. This is due to the
fact that the span of RS�g

k (α) is given by linear combinations
of codewords in RS�g

k (α) where each code symbol represents
a monomial. In other words, to construct coded PPC schemes
that retrieve polynomials of degree at most g, we require
g(k − 1)+ 1 ≤ n and dC̃

min ≥ n − (g(k − 1)+ 1)+ 1, where

dC̃
min denotes the minimum distance of C̃ , to be able to decode

the computation correctly. It follows from Proposition 1 that
C̃ = RS k̃(α) with dimension k̃ = min{g(k − 1) + 1, n} =
g(k − 1)+ 1 and dC̃

min = n − k̃ + 1 = n − (g(k − 1)+ 1)+ 1.

B. PPC Achievable Rate Matrix

We now extend the notion of a PIR achievable rate matrix
for the coded PIR problem in Definition 4 to the coded PPC
problem.

Definition 7: Let C be an arbitrary [n, k] code and denote
by C̃ = C �g the k̃-dimensional code generated by the g-fold
star-product of C with itself. A ν × n binary matrix �PPC

κ,ν is
called a PPC achievable rate matrix for (C , C̃ ), if

1) �PPC
κ,ν is a κ-column regular matrix, i.e., its column sums

are equal to κ , with κ/ν = k̃/n, and
2) for each matrix row λi , χ(λi ) is always an information

set for C̃ , i ∈ [ν].
In [12, Def. 11], two PIR interference matrices are defined

from a PIR achievable rate matrix. Similar to the notion of
PIR interference matrices, given a PPC achievable rate matrix
�PPC
κ,ν , the PPC interference matrices Aκ×n and B(ν−κ)×n , are

defined as follows.
Definition 8: For a given ν × n PPC achievable rate matrix

�PPC
κ,ν (C , C̃ ) = (λu, j ), we define the interference matrices

Aκ×n = (ai, j ) and B(ν−κ)×n = (bi, j ) for the code pair
(C , C̃ ) as

ai, j � u if λu, j = 1, ∀ j ∈ [n], i ∈ [κ], u ∈ [ν],
bi, j � u if λu, j = 0, ∀ j ∈ [n], i ∈ [ν − κ], u ∈ [ν].

For j ∈ [n], let A j � {ai, j : i ∈ [κ]} and B j � {bi, j : i ∈
[ν − κ]}. Then, the j -th column of Aκ×n contains the row
indices of �PPC

κ,ν whose entries in the j -th column are equal
to 1, while B(ν−κ)×n contains the remaining row indices of
�PPC
κ,ν . Hence, B j = [ν] \A j , ∀ j ∈ [n].
Note that in Definition 8, for each j ∈ [n], distinct values

of u ∈ [ν] should be assigned for all i . Thus, the assignment
is not unique in the sense that the order of the entries of each
column of A and B can be permuted.

Example 1: Consider a DSS storing messages using a [4, 2]
RS code C over F5 with GC =

(
1 1 1 1
0 1 2 3

)
and candidate

polynomials of degree at most g = 2. We have C̃ = C �2,

k̃ = g(k − 1) + 1 = 3, and GC̃ =
⎛⎜⎝1 1 1 1

0 1 2 3

0 1 4 4

⎞⎟⎠. One can

verify that

�PPC
3,4 =

⎛⎜⎜⎜⎝
1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

⎞⎟⎟⎟⎠
is a valid PPC achievable rate matrix for (C , C̃ ), with
(κ, ν) = (3, 4), generated using the four information sets of
C̃ and the corresponding interference matrices are given by

A3×4 =
⎛⎜⎝1 1 1 2

2 2 3 3

3 4 4 4

⎞⎟⎠ and B1×4 = (4 3 2 1).

�
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C. Generic Query Generation

In this subsection, we utilize the query generation algorithm
Q-Gen that is introduced for PLC from MDS-PIR capacity-
achieving coded DSSs in [18] as the basis for our PPC scheme.
More specifically, the query generation algorithm Q-Gen
generates the query of a PIR-like scheme from a linearly-
coded DSS with dependent virtual messages representing the
evaluations of the μ candidate functions. Accordingly, the PPC
scheme requires the length of each message to be L = νμ · k.
Before running the main algorithm to generate the query sets,
the following index preparation for the coded symbols stored
in each database is performed.

1) Index Preparation: Given that the query generation
algorithm Q-Gen generates a fixed query set structure as
a deterministic function of the desired polynomial index,
we introduce an index permutation. The goal is to make the
symbols queried from each database appear to be chosen
randomly and independently from the desired polynomial
index. Note that the polynomial is computed separately for
the t-th row of all messages, t ∈ [β]. Therefore, similar to the
coded PLC schemes in [17], [18], we apply a permutation that
is fixed across all coded symbols for the t-th row to maintain
the dependency across the associated message elements. Let
π(·) be a random permutation function over [β], and let

U (v �)
t, j � φ(v

�)(Cπ(t), j), t ∈ [β], j ∈ [n], v � ∈ [μ],
denote the t-th permuted symbol associated with the v �-th
virtual message X(v

�) stored in the j -th database, where C t, j =(
C(1)

t, j , . . . ,C( f )
t, j

)T. The permutation π(·) is randomly selected
privately and uniformly by the user.

2) Preliminaries: The query generation procedure is subdi-
vided into μ rounds, where each round τ generates the queries
based on the concept of τ -sums as defined in the following.

Definition 9 (τ -Sum): For τ ∈ [μ], a sum U (v1)
i1, j + U (v2)

i2, j +
· · · + U (vτ )

iτ , j , j ∈ [n], of τ distinct symbols is called a τ -sum
for any (i1, . . . , iτ ) ∈ [β]τ , and {v1, . . . , vτ } ⊆ [μ] determines
the type of the τ -sum.

Since we have
(μ
τ

)
different selections of τ distinct elements

out of μ elements, a τ -sum can have
(μ
τ

)
different types.

For a requested polynomial evaluation indexed by v ∈ [μ],
a query set Q(v)

j , j ∈ [n], is composed of μ disjoint subsets of
queries, each subset of queries is generated by the operations
of each round τ ∈ [μ]. In a round we generate the queries
for all possible

(μ
τ

)
types of τ -sums. For each round τ ∈ [μ]

the corresponding query subset is further subdivided into two
subsets Q(v)

j (D; τ ) and Q(v)
j (U; τ ). The first subset Q(v)

j (D; τ )
corresponds to τ -sums with a single symbol from the desired
polynomial evaluation and τ−1 symbols from the evaluations
of undesired polynomials, while the second subset Q(v)

j (U; τ )
corresponds to τ -sums with symbols only from the evaluations
of undesired polynomials. Here, D is an indicator for “desired
function evaluation,” while U an indicator for “undesired func-
tions evaluations.” Note that we require κμ−(τ−1)(ν − κ)τ−1

distinct instances of each τ -sum type for every query set Q(v)
j .

We utilize these sets to generate the query sets of each round
according to the interference matrices Aκ×n and B(ν−κ)×n .

The queries Q(v)
j are generated by setting (κ, ν) = (k̃, n)

and invoking the query generation algorithm Q-Gen of
[18, Sec. IV-A] with the PPC problem parameters as follows:
{Q(v)

1 , . . . , Q(v)
n } ← Q-Gen(v, μ, κ, ν, n,Aκ×n ,B(ν−κ)×n).

The total number of queries generated by the algorithm is
given by

n∑
j=1

∣∣Q(v)
j

∣∣ = n
μ∑
τ=1

(
μ

τ

)
κμ−τ+1(ν − κ)τ−1. (4)

D. Sign Assignment and Redundancy Elimination

Here, we generalize the coded PLC scheme of [18] in
terms of exploiting the dependency between the virtual mes-
sages. Let Mc

g( f ) denote the size of the monomial basis of
the polynomial candidate set. Then, since any polynomial
in the candidate set is a linear function of its monomial
basis of size Mc

g( f ), a PPC scheme can be seen as a PLC
scheme performed over a set of Mc

g( f ) messages. Hence, the
redundancy resulting from the linear dependencies between
the virtual messages is also present for PPC and we can
extend [18, Lem. 4] and [13, Lem. 1] to this scheme. To exploit
the dependency between the virtual messages we adopt a
similar sign assignment process to each queried symbol of
the virtual monomial messages as detailed in [13, Sec. IV-B].
Using Lagrange interpolation, we will show that it results
in a uniquely solvable equation system from the different
τ -sum types given the side information available from all other
databases. By obtaining such a system of equations in each
round τ ∈ [μ] of the protocol, the user can determine some
of the answers offline.

Now, consider τ -sum types for τ = 1, where we download
individual segments of each virtual message including f
independent messages. For this type, the user can determine
any polynomial from the f obtained message segments. Based
on this insight we can state the following lemma.

Lemma 1: Let μ ∈ [ f : μg( f )] be the number of can-
didate polynomials evaluations, including the f independent
messages. For each query set, for all v ∈ [μ], each database
j ∈ [n], and based on the queried segments from the f inde-
pendent messages, any

(μ− f
1

)
1-sum types out of all possible(μ

1

)
types are redundant. On the other hand, for τ ∈ [2 : μ],

any
(μ−Mc

g( f )
τ

)
τ -sum types out of

(μ
τ

)
types are redundant.

Thus, the number of nonredundant τ -sum types with τ > 1 is
given by ρ(μ, τ) �

(μ
τ

)− (μ−Mc
g( f )
τ

)
.

The proof of Lemma 1 is presented in Appendix B. In the
following subsection, we show that the recovery and privacy
conditions of our proposed PPC scheme are satisfied.

E. Recovery and Privacy

The scheme works as the PLC scheme in [18] by using the
code C̃ instead of the storage code C . This is the case since
for any polynomial evaluation code D , D∗i ⊆ D∗ j for all
i ∈ [ j ], j ∈ N, since the all-ones codeword is in D (see also
[20, Lem. 6]). Moreover, since the definition of the PPC
achievable rate matrix in Definition 7 is analogous to the
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corresponding definition of a PIR achievable rate matrix in
Definition 4 (by using C̃ instead of C ), it can directly be
seen that the arguments in the proof of [12, Thm. 1] (see
[12, App. B]) can be applied. Hence, it follows that k̃ distinct
evaluations of ψt (z) = φ(�t (z)) for each segment t can
be recovered. Since deg (ψt (z)) ≤ k̃ − 1, it follows that
the polynomial ψt (z) can be reconstructed via polynomial
interpolation and then the desired polynomial evaluations can
be recovered by evaluating ψt (z) at γ j , j ∈ [k]. This is equal
to evaluating the desired polynomial φ(·) over the uncoded
information symbols, i.e., φ(W t, j ) due to Lagrange encoding.

As for the privacy of the PPC scheme, using an argumenta-
tion similar to the PLC scheme [18, Sec. IV-D], it can be seen
that for any desired index v ∈ [μ], the redundant τ -sum types
according to Lemma 1 can be fixed, i.e., the same τ -sum types
are redundant for all v ∈ [μ], and hence the queries satisfy
the privacy condition.

F. Achievable PPC Rate

Since C̃ is an [n, k̃] MDS code (C is an RS code),
there always exists a PPC achievable rate matrix �PPC

κ,ν with
κ/ν = k̃/n. Hence, using Lemma 1 we can prove the following
theorem.

Theorem 2: Consider a DSS that uses an [n, k] RS code
C to store f messages over n noncolluding databases using
Lagrange encoding. Let μ ∈ [ f : μg( f )] be the number
of candidate polynomials evaluations of degree at most g,
including the f independent messages. Then, the PPC rate

RPPC =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

f
Hmin if n ≤ g(k − 1)+ 1,

k
k̃

(
1− k̃

n

)
Hmin

1− ( k̃
n

)Mc
g( f ) − (Mc

g( f )− f )
(
1− k̃

n

)( k̃
n

)μ−1

otherwise

(5)

is achievable.
Proof: From (4) and Lemma 1, the achievable PPC rate

after removing redundant τ -sums becomes

R
(a)= kνμHmin

n
((μ

1

)− (μ− f
1

))
κμ + n

μ∑
τ=2

ρ(μ, τ)κμ−τ+1(ν − κ)τ−1

= kνμHmin

n
[

f κμ +∑μ
τ=2 ρ(μ, τ)κ

μ−τ+1(ν − κ)τ−1
] , (6)

where (a) follows from the PPC rate in Definition 1, (4), and
Lemma 1. Now, if ν = κ , or equivalently (from Definition 7)

n = k̃
(b)= min{g(k− 1)+ 1, n}, i.e., n = g(k− 1)+ 1 (since n

cannot be strictly smaller than g(k−1)+1 by assumption and
(b) is from Proposition 1), then it follows directly from (6)
that R = k Hmin/n f . Moreover, it can be seen in this case that
the proposed scheme reduces to the trivial scheme where the
f independent files are downloaded and then the desired poly-
nomial evaluation is performed offline. However, the proposed
scheme requires an unnecessarily high redundancy to decode
the f files, i.e., k̃ = n instead of k̃ = k. As a result, for the case
of n ≤ g(k−1)+1, we opt out of any other achievable scheme

and achieve the PPC rate Hmin/ f by simply downloading all f
files and performing the desired polynomial evaluation offline.
Otherwise, i.e., ν > κ , or equivalently (from Definition 7),
n > k̃ = min{g(k − 1) + 1, n}, i.e., n > g(k − 1) + 1, then
from (6) we have

R
(c)=

k(ν−κ)
nκ Hmin[

f (ν−κ)
ν

(
κ
ν

)μ−1 + 1
νμ

∑μ

τ=2
ρ(μ, τ)κμ−τ (ν − κ)τ

]
(d)=

k(n−k̃)
nk̃

Hmin[
f
(
1− k̃

n

)( k̃
n

)μ−1 + 1
nμ

∑μ

τ=2
ρ(μ, τ)k̃μ−τ (n − k̃)

τ
]

(e)= k

k̃

(
1− k̃

n

)
Hmin

[
f
(

1− k̃

n

)( k̃

n

)μ−1

+ 1

nμ

(∑μ

τ=0

(
μ

τ

)
k̃μ−τ (n − k̃)τ−μk̃μ−1(n − k̃)−k̃μ

)
− 1

nμ
∑μ

τ=2

(
μ−Mc

g( f )

τ

)
k̃μ−τ (n − k̃)τ

]−1

( f )= k

k̃

(
1− k̃

n

)
Hmin

[
f
(

1− k̃

n

)( k̃

n

)μ−1

+ 1

nμ

(
nμ − μk̃μ−1(n − k̃)− k̃μ

)
− 1

nμ

(
η∑
τ=0

(
η

τ

)
k̃μ−τ (n − k̃)τ−ηk̃μ−1(n − k̃)−k̃μ

)]−1

= k

k̃

(
1− k̃

n

)
Hmin

[
f
(

1− k̃

n

)( k̃

n

)μ−1 − μ
(

1− k̃

n

)( k̃

n

)μ−1

+ 1−
( k̃

n

)μ − 1

nμ

(
k̃μ−η

∑η

τ=0

(
η

τ

)
k̃η−τ (n − k̃)τ

)
+ η

(
1− k̃

n

)( k̃

n

)μ−1 +
( k̃

n

)μ]−1

= k

k̃

(
1− k̃

n

)
Hmin

[
1+ ( f − μ+ η)

(
1− k̃

n

)( k̃

n

)μ−1

− 1

nμ

(
k̃μ−ηnη

)]−1

=
k
k̃

(
1− k̃

n

)
Hmin

1− ( k̃
n

)Mc
g( f ) − (Mc

g( f )− f )
(
1− k̃

n

)( k̃
n

)μ−1
,

where (c) follows since ν > κ ; (d) holds since we have
κ/ν = k̃/n from Definition 7; (e) follows from expanding
the summation over the terms of ρ(μ, τ); and ( f ) follows
by defining η � μ −Mc

g( f ) and the fact that
(m

n

) = 0 if
m < n.

Corollary 1: Consider a DSS that uses an [n, k] RS code
C to store f messages over n noncolluding databases using
Lagrange encoding. Let μ ∈ [ f : μg( f )] be the number
of candidate polynomials evaluations of degree at most g,
including the f independent messages. Then, the PPC rate

RPPC,∞ = k

n

(
max{n − g(k − 1)− 1, 0}

g(k − 1)+ 1

)
Hmin (7)

is achievable as f →∞.
Proof: If n ≤ g(k−1)+1, then it follows from (5) that the

PPC rate approaches zero as f →∞, which is in accordance
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with (7). Otherwise, if n > g(k − 1) + 1, the result follows
directly from (5) by taking the limit f → ∞ and using the

fact that k̃
(a)= min{g(k− 1)+ 1, n} = g(k− 1)+ 1 < n, where

(a) follows from Proposition 1.
Note that the asymptotic PPC rate in (7) is equal to the

rate of the general scheme from [20] when Hmin = 1. This
difference is due to the simplified rate definition used in [20].
Moreover, our proposed scheme cannot be obtained using
the concept of refinement and lifting of so-called one-shot
schemes as introduced for PIR in [28], since this concept
cannot readily be applied to the function computation case.

Remark 3: Note that in Lemma 1 and Theorem 2 we assume
that the set of μ candidate functions includes its monomial
basis which at least consists of the f independent files, i.e.,
{W(1), . . . ,W( f )} ⊆ {X(1), . . . ,X(μ)} and μ ≥ f . However,
for the PPC problem where this is not the case, one can see
that the PPC rate

RPPC =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

f
Hmin if n ≤ g(k − 1)+ 1,

k
k̃

(
1− k̃

n

)
Hmin

1− ( k̃
n

)μ otherwise

is achievable with our general PPC scheme for RS-coded DSSs
based on (4). Moreover, Corollary 1 holds when μ→∞.

V. PPC SCHEME FOR SYSTEMATIC RS-ENCODED DSSS

In this section, we consider the case of RS-coded DSSs with
systematic Lagrange encoding and first adapt the concept of
the PPC achievable rate matrix from Definition 7.

A. PPC Systematic Achievable Rate Matrix

In contrast to the PPC scheme in Section IV, the basic idea
is to utilize the systematic part of the RS code to recover
the requested polynomial evaluation directly, i.e., we do not
need to interpolate the systematic downloaded symbols to
determine the requested polynomial evaluation. Thus, we can
further enhance the download rate. However, due to the generic
PC query design principles, namely, message symmetry and
side information exploitation, we are restricted in how to
exploit side information obtained from the systematic nodes.
Specifically, for decodability (side information cancellation) to
be possible, the side information obtained from the systematic
nodes must be utilized in an isolated manner within an infor-
mation set of the polynomial decoding code (see Section IV-
A), such that we can reverse the order of the decoding pro-
cedure (i.e., unlike our RS-coded PPC scheme, we interpolate
first and then cancel the side information). This restriction
is further illustrated by a careful construction of a PPC sys-
tematic achievable rate matrix (Definition 10 below) and the
corresponding interference matrices. Moreover, we modify the
general PPC scheme to utilize only the necessary number of
nodes, denoted by n̂, that guarantee the isolated use of system-
atic side information. Accordingly, we introduce an achievable
rate matrix for the systematic PPC scheme as follows.

Definition 10: Let C be an arbitrary [n, k] code and denote
by C̃ = C �g the k̃-dimensional code generated by the g-fold

star-product of C with itself. Moreover, let2

n̂ �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n if

⌊
n

k̃

⌋
= 1 and n −

⌊
n

k̃

⌋
k̃<k,

k +
(⌊

n

k̃

⌋
− 1

)
k̃ if

⌊
n

k̃

⌋
> 1 and n −

⌊
n

k̃

⌋
k̃<k,

k +
⌊

n

k̃

⌋
k̃ if

⌊
n

k̃

⌋
≥ 1 and n −

⌊
n

k̃

⌋
k̃≥k.

(8)

Then, a ν × n̂ binary matrix �S,PPC
κ,ν is called a PPC systematic

achievable rate matrix for (C , C̃ ) if the following conditions
are satisfied.

1) �S,PPC
κ,ν is a κ-column regular matrix, and

2) there are exactly � �
⌊

n̂/k̃
⌋
κ rows {λi }i∈[�] and ν − �

rows {λi+�}i∈[ν−�] of �S,PPC
κ,ν such that ∀ i ∈ [�], χ(λi )

contains an information set for C̃ and ∀ i ∈ [ν − �],
χ(λi+�) = [k].

The following lemma shows how to construct a PPC system-
atic achievable rate matrix with (κ, ν) = (

k, n̂−⌊n̂/k̃
⌋
(k̃−k)

)
.

Lemma 2: Let C be an arbitrary [n, k] code and C̃ = C �g.
Then, there exists a PPC systematic achievable rate matrix
�S,PPC
κ,ν for (C , C̃ ) with (κ, ν) = (

k, n̂−⌊n̂/k̃
⌋
(k̃− k)

)
, where

k̃ is the dimension of C̃ .
Proof: Let δ̂ �

⌊
n̂/k̃

⌋
and � � n̂− δ̂k̃. From our choices

of n̂ in (8), one can verify that � ≤ k and � is well-defined.
Accordingly, construct a matrix Ak×n̂ as in Definition 8 with

ai, j = δ̂k + i, if j ∈ [k], i ∈ [�]. (9)

In this way, k� entries of Ak×n̂ are filled. Next, let{
a

i( j)
1 , j

, . . . , a
i( j)
u( j), j

}
, j ∈ [n̂], denote the remaining empty

entries in column j of Ak×n̂ , where u( j) ≤ k is the number
of empty entries in column j . Hence, the kn̂− k� = k(n̂−�)
entries {

a
i(1)1 ,1, . . . , a

i(1)u(1),1
, . . . , a

i(n̂)1 ,n̂
, . . . , a

i(n̂)u(n̂),n̂

}
(10)

are empty. Now, observe that (n̂−�)δ̂−1 = (
n̂−(n̂−δ̂k̃))δ̂−1 =

k̃ ∈ N. By consecutively assigning {1, . . . , δ̂k} to the entries of
Ak×n̂ in (10) and repeating this process k̃ times, the remaining
δ̂k · (n̂ − �)/δ̂ = k(n̂ − �) empty entries of Ak×n̂ are filled.
Note that since values of [δ̂k] are consecutively assigned, the
largest number of empty entries of each column of Ak×n̂ is
k, and δ̂ = ⌊

n̂/k̃
⌋ ≥ 1, there are no repeated values of [δ̂k]

in any column of Ak×n̂ , which implies that condition 1) in
Definition 10 is satisfied. From (9) and (10), it can be seen
that each a ∈ [δ̂k] = [�] occurs in k̃ columns of Ak×n̂ and
each a ∈ [δ̂k + 1 : δ̂k + �] occurs in k columns of Ak×n̂ .
This implies that condition 2) in Definition 10 is satisfied
with κ = k, � = δ̂k, and ν = � + δ̂k, which completes the
proof.

2Note that the first requirement of the final case of (8) is unnecessary as⌊
n/k̃

⌋ ≥ 1 always. However, it is included for symmetry reasons.
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Lemma 3: For the PPC systematic achievable rate matrix
from Lemma 2, it holds that

ν =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n − k̃ + k if

⌊
n

k̃

⌋
= 1 and n −

⌊
n

k̃

⌋
k̃ < k,⌊

n

k̃

⌋
k if

⌊
n

k̃

⌋
> 1 and n −

⌊
n

k̃

⌋
k̃ < k,⌊

n

k̃

⌋
k + k if

⌊
n

k̃

⌋
≥ 1 and n −

⌊
n

k̃

⌋
k̃ ≥ k.

(11)

Proof: To prove the results, we use Definition 10 and
the fact that ν = n̂ − ⌊n̂/k̃

⌋
(k̃ − k). Now, if

⌊
n/k̃

⌋ = 1 and
n − ⌊

n/k̃
⌋

k̃ < k (the first case from Definition 10), then it
follows directly that ν = n̂ − ⌊n̂/k̃

⌋
(k̃ − k) = n − ⌊n/k̃

⌋
(k̃ −

k) = n − k̃ + k. On the other hand, if
⌊
n/k̃

⌋
> 1 and

n − ⌊
n/k̃

⌋
k̃ < k (the second case from Definition 10), then

after inserting n̂ = k+ (⌊n/k̃
⌋−1

)
k̃ into the expression for ν,

ν = k
⌊

n/k̃
⌋−⌊k/k̃

⌋
(k̃−k) = k

⌊
n/k̃

⌋
, since

⌊
k/k̃

⌋
(k̃−k) = 0.

In a similar manner, the remaining case in (11) can be
shown.

In the following lemma, we show a lower bound to the
fraction κ/ν.

Lemma 4: If a matrix �S,PPC
κ,ν (C , C̃ ) exists for an [n, k]

code C and the [n, k̃] code C̃ , then we have κ/ν ≥ k/(
n̂ − �n̂/k̃�(k̃ − k)

)
.

Proof: Since by definition each row λi of �S,PPC
κ,ν contains

an information set for C̃ , i ∈ [�], � = ⌊
n̂/k̃

⌋
κ , and each row

λi+� = [k], i ∈ [ν − �], we have wH (λi ) ≥ k̃, i ∈ [�], and
wH

(
λi+�

) = k, i ∈ [ν − �]. Let v j , j ∈ [n̂], be the j -th
column of �S,PPC

κ,ν . If we look at �S,PPC
κ,ν from both a row-wise

and a column-wise point of view, we obtain

�k̃ + (ν − �)k ≤
�∑

i=1

wH (λi )+
ν−�∑
i=1

wH
(
λi+�

)
=

n̂∑
j=1

wH
(
v j
) = κ n̂.

Thus, we have

�k̃ − �k + νk = �(k̃ − k)+ νk ≤ κ n̂,

from which the result follows.
The systematic PPC scheme requires the length of each

message to be L = νμ · k. The queries Q(v)
j are generated

by setting (κ, ν) = (k, n̂ − ⌊
n̂/k̃

⌋
(k̃ − k)) and invoking the

query generation algorithm Q-Gen of [18, Sec. IV-A] with
the systematic PPC problem parameters as follows:
{Q(v)

1 , . . . , Q(v)
n̂ } ← Q-Gen(v, μ, κ, ν, n̂,Aκ×n̂ ,B(ν−κ)×n̂).

Note that we utilize n̂ ≤ n databases, including the systematic
nodes, in constructing the scheme, while the remaining n − n̂
databases are not queried.

B. Sign Assignment and Redundancy Elimination
Since this scheme is a modified version of the general

PPC scheme where we utilize the systematic part of the RS
code to recover the requested polynomial evaluation directly,
the scheme inherently extends the same redundancy and sign
assignment arguments stated in Section IV-D. The only dif-
ference between the general PPC scheme and the systematic
PPC scheme lies within the recovery argument.

C. Recovery and Privacy

The scheme works as the PPC scheme in Section IV,
however by mixing between the code C̃ and the storage
code C . Due to this mixture, we require a more complicated
decoding process. The key idea of the recovery process of the
scheme is illustrated with Example 2 in Section V-E.

Remark 4: The systematic scheme above reduces to the
systematic PPC scheme presented in [1] if and only if n− k̃ ≤
k.3 In particular, this happens if and only if the storage code
rate k/n ≥ k/(k + g(k − 1) + 1). Otherwise, n̂ is smaller
than n and the PPC rate becomes larger than the one for the
systematic scheme in [1].

Remark 4 can be easily verified with the following argu-
ment. The two schemes are equivalent if and only if n = n̂
and ν = k + min{k, n − k̃} (see [1, Thm. 2]). Assume
that n − k̃ ≤ k. Then, 1 ≤ ⌊

n/k̃
⌋ ≤ ⌊

1 + k/k̃
⌋ ≤ 2.

If
⌊

n/k̃
⌋ = 1, then it follows directly from (8) and Lemma 3

that n = n̂ and ν = k+ n− k̃ = k+min{k, n− k̃}. Otherwise,
if
⌊

n/k̃
⌋ = 2, then k = k̃, 3k > n ≥ 2k, and from (8),

we have n̂ = k + k̃ = 2k. Since, by assumption, we have
n − k̃ ≤ k, it follows that n ≤ k + k̃ = 2k. Combining the
two inequalities over n, specifically, 3k > n ≥ 2k and n ≤ 2k,
we conclude that n = 2k and it holds that n = n̂. Now, from
Lemma 3, ν = 2k = k + min{k, n − k̃}, and the equivalence
of the two schemes follows. The “only-if” part follows in a
similar manner. Finally, the lower bound on the storage code
rate follows directly from the condition n − k̃ ≤ k.

D. Achievable PPC Rate
Using Lemmas 1 and 2, the following theorem follows.
Theorem 3: Consider a DSS that uses an [n, k] RS code

C to store f messages over n noncolluding databases using
systematic Lagrange encoding. Let μ ∈ [ f : μg( f )] be the
number of candidate polynomials evaluations of degree at most
g, including the f independent messages. Then, the PPC rate

RS
PPC =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

f
Hmin if n ≤ g(k − 1)+ 1,

k
n̂

(
ν−κ
κ

)
Hmin

1− ( κν )Mc
g( f ) − (Mc

g( f )− f )
(
1− κ

ν

) (
κ
ν

)μ−1

otherwise,

(12)

with (κ, ν) = (k, n̂ − �n̂/k̃�(k̃ − k)) and n̂ as defined in (8),
is achievable.

Proof: From (4) and by removing redundant τ -sums from
the query sets according to Lemma 1, the achievable PPC rate
becomes

R
(a)= kνμHmin

n̂
((μ

1

)− (μ− f
1

))
κμ + n̂

μ∑
τ=2

ρ(μ, τ)κμ−τ+1(ν − κ)τ−1

= kνμHmin

n̂κ
[

f κμ−1 +∑μ
τ=2 ρ(μ, τ)κ

μ−τ (ν − κ)τ−1
] , (13)

where (a) follows from the PPC rate in Definition 1, (4), and
Lemma 1.

3Note that there is a subtle difference since more τ -sum types for τ > 1 are
potential identified as being redundant (depending on the actual candidate set)
by using Mc

g( f ) in Lemma 1 than in [1, Lem. 1], which uses Mg( f ).

Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on May 24,2022 at 20:07:43 UTC from IEEE Xplore.  Restrictions apply. 



OBEAD et al.: PRIVATE POLYNOMIAL FUNCTION COMPUTATION FOR NONCOLLUDING CODED DATABASES 1809

Now, we first consider the case where ν = κ and show that
it is equivalent to n ≤ g(k − 1)+ 1. Assume that ν = κ = k.
Then, for the first case of (11) it follows that k̃ = n. For the
second and third cases of (11), to obtain ν = k, we must have⌊

n/k̃
⌋ = 1 or

⌊
n/k̃

⌋ = 0, respectively, which violates the
condition of the second case and is never true for the third
case. Since, by Proposition 1, k̃ = min{g(k − 1)+ 1, n} = n,
it follows that n ≤ g(k−1)+1. Conversely, if n ≤ g(k−1)+1,
then k̃ = min{g(k − 1) + 1, n} = n, and it follows from
(11) (the first case) that ν = κ . Hence, in summary, we have
shown that ν = κ is equivalent to n ≤ g(k − 1) + 1. As a
result, for n ≤ g(k− 1)+ 1, it follows directly from (13) that
R = k Hmin/n̂ f . Moreover, it can be seen in this case that the
proposed systematic PPC scheme reduces to the trivial scheme
for which all the f independent files are downloaded and the
desired polynomial evaluation is performed offline. However,
similar to the general PPC scheme, the proposed systematic
PPC scheme requires an unnecessarily high redundancy to
decode the f files, i.e., k̃ = n̂ instead of k̃ = k. As a result,
for the case of n ≤ g(k − 1) + 1, we again opt out of any
other achievable scheme and achieve the PPC rate Hmin/ f by
simply downloading all f files and performing the desired
polynomial evaluation offline.

On the other hand, if ν > κ , or equivalently, n > g
(k − 1)+ 1, then from (13) we have

R
(b)=

k
n̂κ Hmin

f κμ−1

νμ + 1
νμ(ν−κ)

∑μ
τ=2 ρ(μ, τ)κ

μ−τ (ν − κ)τ

=
k(ν−κ)

n̂κ Hmin

f (ν−κ)
ν

(
κ
ν

)μ−1 + 1
νμ
∑μ
τ=2 ρ(μ, τ)κ

μ−τ (ν − κ)τ
...

(c)=
k
n̂ (
ν−κ
κ )Hmin

1− ( κν )Mc
g( f ) − (Mc

g( f )− f )
(
1− κ

ν

) (
κ
ν

)μ−1
,

where (b) follows since ν > κ and (c) results from following
similar steps as in the proof of the achievable PPC rate of
Theorem 2 in Section IV-F.

Corollary 2: Consider a DSS that uses an [n, k] RS code
C to store f messages over n noncolluding databases using
systematic Lagrange encoding. Let μ ∈ [ f : μg( f )] be the
number of candidate polynomials evaluations of degree at most
g, including the f independent messages. Then, the PPC rate

RS
PPC,∞ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

n

(
max{n − g(k − 1)− 1, 0})Hmin

if

⌊
n

k̃

⌋
= 1 and n −

⌊
n

k̃

⌋
k̃ < k,

1

n̂

(⌊
n

g(k − 1)+ 1

⌋
k − k

)
Hmin

if

⌊
n

k̃

⌋
> 1 and

n −
⌊

n

g(k − 1)+ 1

⌋
(g(k − 1)+ 1) < k,

1

n̂

(⌊
n

g(k − 1)+ 1

⌋
k

)
Hmin

if

⌊
n

k̃

⌋
≥ 1 and

n −
⌊

n

g(k − 1)+ 1

⌋
(g(k − 1)+ 1) ≥ k,

(14)

with n̂ as defined in (8), is asymptotically achievable for
f →∞.

Proof: If n ≤ g(k−1)+1, then it follows from (12) that the
PPC rate approaches zero as f →∞, which is in accordance
with (14) (first case, since

⌊
n/k̃

⌋ = 1 and n−⌊n/k̃
⌋

k̃ = 0<k).
Otherwise, if n > g(k−1)+1, the result follows directly from
(12) by taking the limit f →∞ and using (11) and the fact
(see Proposition 1) that k̃=min{g(k−1)+1, n}=g(k−1)+1.

Note that when n − k̃ ≤ k, the asymptotic PPC rate in
(14) is equal to the rate of the systematic scheme from [16,
Thm. 3], [20] when Hmin = 1. This difference is due to the
simplified rate definition used in [16], [20]. However, for the
case when n − k̃ > k, with the simplified rate definition,
i.e., for Hmin = 1, the asymptotic PPC rate in (14) is larger
compared to the PPC rate of the systematic scheme from
[16, Thm. 3], [20]. See also Remark 4.

Remark 5: Similar to Remark 3, in Theorem 3 we assume
that the set of μ candidate functions includes its monomial
basis which at least consists of the f independent files, i.e.,
{W(1), . . . ,W( f )} ⊆ {X(1), . . . ,X(μ)} and μ ≥ f . However,
for the PPC problem where this is not the case, one can see
that the PPC rate

RS
PPC =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

f
Hmin if n ≤ g(k − 1)+ 1,

k
n̂

(
ν−κ
κ

)
Hmin

1− ( κν )μ otherwise,

with (κ, ν) = (k, n̂ − �n̂/k̃�(k̃ − k)) and n̂ as defined
in (8), is achievable with our PPC scheme for RS-coded DSSs
with systematic Lagrange encoding based on (4). Moreover,
Corollary 2 holds when μ→∞.

We illustrate the key concept of our proposed scheme in
Theorem 3 with an example for the special case of PMC.

E. Special Case: PMC Scheme

As the rate of PMC is a decreasing function of the number
of candidate monomials, we can increase the PMC rate by
limiting ourselves to the set of monomials excluding parallel
monomials. To this end, we define a parallel monomial as
a monomial resulting from raising another monomial to a
positive integer power, i.e., to {W i : i ∈ N

f
0 , 1 ≤ wt(i) ≤ g,

i | p, p ∈ Pg}. Here, Pg denotes the set of prime numbers
less or equal to g and i = (i1, . . . , i f ) | p means that all
nonzero i j , j ∈ [ f ], are divisors of p. For example, for a
bivariate monomial over the variables x and y of degree at
most g = 2 the set of possible monomials is {x, y, xy, x2, y2}.
Note that x2 is a parallel monomial as it can be obtained
by raising the monomial x to the power of 2. Thus, x2 and
y2 are parallel monomials and can be excluded from the set
of candidate monomials. Denote by P = {p1, . . . , p|P |} an
arbitrary nonempty subset of Pg . By applying the Legendre
formula for counting the prime numbers less or equal to g,
we obtain the number of nonparallel monomials as

M̃g( f ) = Mg( f )

+
∑

∀P⊆Pg :P �=∅,
p1···p|P|≤g

(−1)|P |
⎡⎣⎛⎝

⌊
g

p1···p|P|
⌋
+ f⌊

g
p1···p|P|

⌋
⎞⎠−1

⎤⎦ .
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TABLE I

PMC QUERY SETS FOR v = 1 AFTER SIGN ASSIGNMENT AND REMOVAL OF REDUNDANT QUERIES FOR THE SYSTEMATIC [4, 2] RS-CODED DSS
OF EXAMPLE 2, f = 2 MESSAGES, AND μ = 3 CANDIDATE MONOMIAL FUNCTIONS. BLUE AND RED SUBSCRIPTS

INDICATE SIDE INFORMATION EXPLOITATION IN ROUNDS τ = 2 AND τ = 3, RESPECTIVELY

Example 2: Consider two messages W(1) and W(2) that are
stored in a noncolluding DSS using a systematic [4, 2] RS code
C . Suppose that the user wishes to obtain a monomial function
evaluation X(v) from the set of nonparallel monomial functions
of degree at most g = 2. We have μ = Mc

2(2) = M̃2(2) =
3, v ∈ [3], and the candidate set of monomial functions
evaluations is {W(1),W(2),W(1) � W(2)}, where � denotes
element-wise multiplication. Let the desired monomial function
index be v = 1, i.e., the user wishes to obtain the function
evaluation X(1) = W(1). We have k̃ = g(k − 1)+ 1 = 3 and
n̂ = n = 4. It follows that ν = n̂ − ⌊

n̂/k̃
⌋
(k̃ − k) = 3,

κ = k = 2, � = ⌊
n̂/k̃

⌋
κ = 2, and

�S,PPC
2,3 =

⎛⎝1 0 1 1
0 1 1 1
1 1 0 0

⎞⎠
is a valid PPC systematic achievable rate matrix (see
Lemma 2). We further obtain the PC interference matrices

A2×4 =
(

1 2 1 1
3 3 2 2

)
and B1×4 = (2 1 3 3) from �S,PPC

2,3

using Definition 8.
We simplify the notation by letting xt, j = C(1)

t, j , yt, j = C(2)
t, j ,

and zt, j = C(1)
t, j ·C(2)

t, j for all t ∈ [β], j ∈ [4], where β = νμ =
27. Since the desired function evaluation is X(1), the goal is
to privately obtain xt, j , ∀ t ∈ [27], and successfully decode
X(1). The construction of the query sets is briefly presented in
the following steps.4

1) Initialization (Round τ = 1): We start with τ = 1 to gen-
erate query sets for each database j holding κμ = 8 instances
of xt, j . By message symmetry this also applies to yt, j and zt, j .

2) Following Rounds (τ ∈ [2 : 3]): Using the PC inter-
ference matrices A2×4 and B1×4 for the exploitation of side
information for the j -th database, j ∈ [n], we generate

4With some abuse of notation for the sake of simplicity, the generated
queries are sets containing their answers.

the desired query sets Q(1)
j (D; τ ) by querying a number

of new symbols of the desired monomial jointly combined
with symbols from other monomials queried in the previous
round from database i �= j . Next, the undesired query sets
Q(1)

j (U; τ ) (if τ = 2) are generated by enforcing message
symmetry.

In the end, we apply the sign assignment procedure to the
query sets for v = 1 and make the final modification to
the queries by removing all the 1-sums corresponding to the
redundant 1-sum types from the first round (see Lemma 1).
This translates to removing the queries for zt, j , since they
can be generated offline by the user given xt, j and yt, j . The
resulting query sets are shown in Table I, where ua:b, j �
{ua, j , . . . , ub, j } for u = x, y, z, and the side information
is highlighted with blue and red for rounds τ = 2 and
τ = 3, respectively. The PMC rate kνμHmin/D = (2× 33 ×
Hmin)/(2 × 4 × 15) = 0.45 · Hmin is achievable, where the
value of Hmin = H(X(3)) depends on the underlying field.

Now we show that the L = kβ = 54 symbols of the desired
function evaluation can be reliably decoded. Note that here
we assume that the nodes j ∈ {1, 2} are systematic.

3) Initialization Round (τ = 1): The following steps are
taken.

(i) Obtain the desired symbols: From the answers retrieved
for the query sets Q(1)

j (D, 1), utilize the information

sets Ĩ1 = {1, 3, 4} and Ĩ2 = {2, 3, 4} of C̃ to decode
the symbols of the desired function evaluation X(1) for
j ∈ {1, 2}. In other words, from x1:4,1, x1:4,3, and
x1:4,4 we use Lagrange interpolation to obtain x1:4,2.
Similarly, from x5:8,2, x5:8,3, and x5:8,4 we obtain x5:8,1.
Finally, from the information set I = {1, 2} of C we
readily have x9:12,1 and x9:12,2. By the end of this round,
we obtain kν(κμ−1) = 24 symbols from the desired
function evaluation X(1).

(ii) We prepare the side information symbols retrieved in this
round to be used in the next round by the following steps.
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TABLE II

DECODED AND COMPUTED SYMBOLS FROM THE
PMC QUERY SETS FOR v = 1 FROM TABLE I

First, for the answers of the query sets Q(1)
j (U, 1), repeat

the previous step to decode the undesired symbols y5:8,1
and y1:4,2. Next, since in this round, due to redundancy
elimination, we retrieve symbols of polynomials of degree
one, i.e., symbols from the f = 2 independent files,
we can use Lagrange interpolation with k = 2 symbols
from the systematic nodes to obtain coded symbols for
j /∈ {1, 2}. Accordingly, from x9:12,1 and x9:12,2 we
obtain x9:12,3 and x9:12,4, and similarly for y9:12,3 and
y9:12,4. Finally, using the dependency between x, y,
and z and the available symbols, compute z5:8,1, z1:4,2,
z9:12,3, and z9:12,4. The obtained symbols are shown in
Table II(a).

4) Second Round (τ = 2): The decoding procedure is as
follows.

(i) Interference cancellation: Utilize the decoded symbols
from the set Q̃(1)

j (U, 1) of Table II(a) to cancel the side
information, marked in blue in Table I, from the answers
of the query sets Q(1)

j (D, 2).
(ii) Obtain the desired symbols: Similar to the first round,

utilize the information sets Ĩ1 = {1, 3, 4} and Ĩ2 =
{2, 3, 4} of C̃ to decode the symbols of the desired
function evaluation X(1) for j ∈ {1, 2} shown in
Q̃(1)

j (D, 2) of Table II(b). Together with the symbols
directly obtained from j ∈ {1, 2}, by the end of this round,
we would have obtained an additional kν(

(μ−1
τ−1

)
κμ−τ (ν−

κ)τ−1) = 24 symbols from the desired function
evaluation.

(iii) We prepare the side information τ -sums retrieved in this
round to be used in the next round by repeating the
previous step to decode the undesired τ -sums y19:20,1 −
z17:18,1 and y15:16,2−z13:14,2 of the query sets Q̃(1)

j (U, 2).
Note that, unlike in the previous round, we do not have
enough symbols to utilize Lagrange interpolation to re-
encode the τ -sums y19:20,3−z17:18,3 and y19:20,4−z17:18,4
as they represent polynomials of degree strictly larger
than one.

5) Final Round (τ = 3): The decoding procedure is as
follows.

(i) Interference cancellation: Utilize the decoded τ -sums
from the set Q̃(1)

j (U, 2) of Table II(b) to cancel the
side information, marked in red in Table I, from the
query sets Q(1)

j (D, 3) for j ∈ {1, 2}. As a result we

obtain the desired symbols of the set Q̃(1)
j (D, 3) shown

in Table II(c).
(ii) Generate new symbols: This step is only required when

n̂−⌊n̂/k̃
⌋

k̃ < k due to the construction of the interference
matrix in the proof of Lemma 2. In particular, the
condition is equivalent to � < k. Using the obtained
symbols from the previous step, colored in Table II for
Q̃(1)

j (D, 3) with blue, along with the side information

downloaded in the previous round in Q(1)
j (U, 2), gen-

erate
⌊

n̂/k̃
⌋

k̃ − (n − k) = 1 new τ -sum with identical
indices to the τ -sums retrieved from the nonsystematic
nodes. These newly generated symbols are shown in
Q̃(1)

j (U, 3).
(iii) Obtain the desired symbols: Here, we reverse the order of

operation of the previous rounds where we use Lagrange
interpolation first and then cancel the side information.
First, utilize the information sets Ĩ1 = {1, 3, 4} and
Ĩ2 = {2, 3, 4} of C̃ to decode the τ -sums containing the
desired function evaluation for j ∈ {1, 2}. As a result,
we obtain x26,1 + y24,1 − z22,1 and x25,2 + y23,2 − z21,2.
Next, cancel the side information from the τ -sums directly
obtained from Q(1)

j (U, 2) for j ∈ {1, 2}. Finally, by the
end of this round, we would have obtained the final
kν(

(μ−1
τ−1

)
κμ−τ (ν − κ)τ−1) = 6 symbols from the desired

function evaluation X(1).

In summary, the total number of desired function eval-
uation symbols obtained from this decoding process is
kν
∑μ
τ=1

(μ−1
τ−1

)
κμ−τ (ν − κ)τ−1 = kνμ = 54. �

VI. NUMERICAL RESULTS

In Fig. 2, we compare the PPC rates of Theorems 2 and 3
and those of the schemes from [16], [20] as well as the
converse bound from Theorem 1 for various values of the
storage code rate α = k/n, fixed k, g = 2, f = 2,
μ = Mc

2(2) = M2(2) = 5 for Fig. 2(a), and f = 10,
μ = Mc

2(10) = M2(10) = 65 for Fig. 2(b). For a small
number of files ( f = 2), the proposed schemes show improved
performance for all code rates, while for a relatively large
number of files ( f = 10), the systematic scheme from
Theorem 3 shows improved performance up to some code rate
(see Remark 4). The converse bound from Theorem 1 shows
a relatively large gap for all values of f and storage code rate
α = k/n. Observe that when neglecting the computational
cost at the user, the trivial scheme which downloads all the
f files and computes the desired function evaluation offline
outperforms all considered PPC schemes when the code rate
is above some threshold that depends on both f and g. For
f = 10 the code rate needs to be close to 1/2 for the trivial
scheme to be the best. Note that the curve for the systematic
scheme follows a staircase in which there are k̃ points on each
horizontal line of the staircase. This follows directly from the
term

⌊
n/k̃

⌋
in the definition of n̂ in (8).
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Fig. 2. PPC rates as a function of the storage code rate α = k/n for fixed f ,
k, g = 2, and μ =Mc

2( f ) =M2( f ). For simplicity, we assume Hmin = 1.

VII. CONCLUSION

For the PPC problem, we have presented two PPC
schemes for RS-coded DSSs with Lagrange encoding showing
improved computation rates compared to the best known PPC
schemes from the literature when the number of messages is
small. Asymptotically, as the number of messages tends to
infinity, the rate of our RS-coded nonsystematic PPC scheme
approaches the rate of the best known nonsystematic PPC
scheme. However, for systematically RS-coded DSSs, our
scheme significantly outperforms all known PPC schemes
up to some specific storage code rate that depends on the
maximum degree of the candidate polynomials. Finally, a gen-
eral converse bound on the PPC rate was derived and com-
pared to the achievable rates of the proposed schemes with
some numerical results. The numerical results depicted a gap
between the derived converse bound and the achievable rates
of the proposed schemes and the best known PPC schemes
from literature. Naturally, this gap raises two promising open
problems. One is to prove that the converse of Theorem 1 is
tight, and the other is to find schemes that exploit the nonlinear
dependencies between the candidate functions evaluations,
as discussed in [19, Sec. IV] for the uncoded case. Both
problems are valuable research directions for future work.

APPENDIX A
PROOF OF THEOREM 1

In this appendix, we prove the converse bound on the PPC
rate presented in Theorem 1. As previously mentioned, the
proof follows similarly to the converse proof of [18, Thm. 2].
Denote the set of all queries by Q �

{
Q(v)

j : v ∈ [μ], j ∈ [n]}.
It can be shown that for both problems of coded PLC and PPC
that use an MDS-PIR capacity-achieving storage code,

H
(
A(v)[n]

∣∣XV ,Q)
≥ k

n
H
(
X(v

�) ∣∣XV)+ k

n
H
(

A(v
�)
[n]

∣∣ XV ,X(v
�),Q), (15)

where V ⊆ [μ] is arbitrary, v ∈ V , and v � ∈ [μ] \ V .5

Next, since there are in total μ function evaluations,
by Definition 6 we can recursively use (15) r − 1 times with
L = {�1, . . . , �r } ⊆ [μ] to obtain

H
(

A(�1)[n]
∣∣ X(�1),Q) ≥ r−1∑

v=1

( k

n

)v
H
(
X(�v+1)

∣∣ X{�1,...,�v })
+
(k

n

)r−1
H
(
A(�r )
[n]

∣∣ X{�1,...,�r },Q)
≥

r−1∑
v=1

( k

n

)v
H
(
X(�v+1)

∣∣ X{�1,...,�v }), (16)

where (16) follows from the nonnegativity of entropy. Note
that in [15], the authors claim that the general converse for the
DPIR problem strongly depends on the chosen permutation of
the indices of the candidate functions. Here, we also make
a similar observation and assume that the order of indices
{�1, . . . , �r } is the permutation that maximizes the summation
term of (16) and consider that X(�1) is the polynomial eval-
uation with the minimum entropy, i.e., H

(
X(�1)

) = LH
(B)
min.

Now,

LH(X (�1))

= H
(
X(�1)

) (a)= H
(
X(�1)

∣∣Q)−H
(
X(�1)

∣∣ A(�1)[n] ,Q
)︸ ︷︷ ︸

=0

= I
(
X(�1) ;A(�1)[n]

∣∣Q) = H
(
A(�1)[n]

∣∣Q)−H
(
A(�1)[n]

∣∣ X(�1),Q)
≤ H

(
A(�1)[n]

∣∣Q)− r−1∑
v=1

( k

n

)v
H
(
X(�v+1)

∣∣X(�1), . . . ,X(�v)
)
,

(17)

where (a) holds since any message is independent of the
queries Q, and knowing the answers A(�1)[n] and the queries Q,
one can determine X(�1), and (17) follows directly from (16).

Finally, the converse proof is completed by showing that

R = L Hmin∑n
j=1 H

(
A(�1)

j

) (a)≤ LHmin

H
(
A(�1)[n]

) (b)≤ L Hmin

H
(
A(�1)[n]

∣∣Q)
≤ Hmin

H
(B)
min +

∑r−1
v=1

( k
n

)v
H
(
X (�v+1)

∣∣ X (�1), . . . , X (�v )
) , (18)

where (a) holds because of the chain rule of entropy, (b) is
due to the fact that conditioning reduces entropy, and we apply
(17) to obtain (18).

5Similar derivations can be found in, e.g., [8], [18], [29], [30].
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APPENDIX B
PROOF OF LEMMA 1

The proof of Lemma 1 relies on two arguments
as follows.
(i) For the first round τ = 1, we can directly eliminate redun-

dant 1-sum types based on both the linear and the non-
linear dependencies between the μ candidate polynomial
functions evaluations and the f independent messages.
As a result, we have a total of μ − f redundant 1-sum
types regardless of the desired polynomial evaluation.

(ii) For τ > 1, we can represent the PPC problem as
an allied PLC problem over the monomial basis of
the polynomial candidate set. Let {�1, . . . , �s} ⊆ [μ]
be the set of indices that correspond to the mono-
mial basis, where, for simplicity, s � Mc

g( f ). Then,

X (�1)
l , . . . , X (�s)

l satisfy H
(
X (�1)

l , . . . , X (�s )
l

) = H
(
X [μ]l

)
,

∀ l ∈ [L]. Without loss of generality, we can order the
candidate polynomial functions by monomials first and
then according to their degree, i.e., (X (1)l , . . . , X (s)l ) =
(X (�1)

l , . . . , X (�s)
l ), ∀ l ∈ [L]. Accordingly, the candidate

functions evaluations are represented in terms of the
monomial basis evaluations with a deterministic linear
mapping V̂μ×Mc

g( f ) of size μ ×Mc
g( f ), for all l ∈ [L],

as
(
X (1)l , . . . , X (μ)l

)T = V̂μ×s
(
X (�1)

l , . . . , X (�s )
l

)T. More-
over, we have (v̂T

1, . . . , v̂
T

Mc
g( f ))

T = IMc
g ( f ), where IMc

g( f )

is the Mc
g( f ) × Mc

g( f ) identity matrix and v̂i is the
i -th row vector of the polynomial coefficient matrix
V̂μ×Mc

g( f ). With this mapping, one can show that for
a desired polynomial indexed by v = 1, the types of
τ -sums corresponding to undesired queries, i.e., τ -sums
that do not involve any symbols from the desired function
evaluation U(1) can be divided into two groups as follows.
• Group 1:

(μ−1
τ

) − (μ−Mc
g( f )
τ

)
τ -sum types for which

the corresponding τ -sums involve at least one element
from the set {U(2),U(3). . . . ,U(Mc

g( f ))}.
• Group 2:

(μ−Mc
g( f )
τ

)
τ -sum types for which the corre-

sponding τ -sums do not involve any element from the
set {U(2),U(3), . . . ,U(Mc

g( f ))},
such that the symbols of the queries corresponding to
Group 2 are functions of the symbols of the queries
corresponding to Group 1 when the symbols of the
desired function evaluation are known. Thus, a number
of
(μ−Mc

g( f )
τ

)
query types in Group 2 are redundant and

can be removed from the query set. Accordingly, with
the above mapping to an allied PLC problem, we have
presented the main component needed to prove the sec-
ond argument. Then, the result follows directly from
[18, Lem. 4] and can be seen as a direct application of
the proof of [13, Lem. 1, Sec. V-B] (see [18, App. C] for
more details).
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