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Abstract— Private computation in a distributed storage sys-
tem (DSS) is a generalization of the private information
retrieval (PIR) problem. In such a setting, a user wishes to
compute a function of f messages stored in n noncolluding
coded databases, i.e., databases storing data encoded with an
[n, k] linear storage code, while revealing no information about
the desired function to the databases. We consider the problem of
private linear computation (PLC) for coded databases. In PLC,
a user wishes to compute a linear combination over the f
messages while keeping the coefficients of the desired linear
combination hidden from the databases. For a DSS setup where
data is stored using a code from a particular family of linear
storage codes, we derive an outer bound on the PLC rate, which
is defined as the ratio of the desired amount of information and
the total amount of downloaded information. In particular, the
proposed converse is valid for any number of messages and linear
combinations, and depends on the rank of the coefficient matrix
obtained from all linear combinations. Further, we present a PLC
scheme with rate equal to the outer bound and hence settle the
PLC capacity for the considered class of linear storage codes.
Interestingly, the PLC capacity matches the maximum distance
separable coded capacity of PIR for the considered class of linear
storage codes.

Index Terms— Capacity, information-theoretic privacy, private
computation, private information retrieval.

I. INTRODUCTION

THE problem of private information retrieval (PIR) from
public databases, introduced by Chor et al. [2], has been

the focus of attention for several decades in the computer
science community (see, e.g., [3]–[5]). The goal of PIR is
to allow a user to privately access an arbitrary message stored
in a set of databases, i.e., without revealing any information of
the identity of the requested message to each database. If the
users do not have any side information on the data stored in
the databases, the best strategy is to store the messages in at
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least two databases while ensuring PIR. Hence, the design of
PIR protocols has focused on the case when multiple databases
store the messages. This connects to the active and renowned
research area of distributed storage systems (DSSs), where the
data is encoded by an [n, k] linear code and then distributed
and stored across n storage nodes [6], usually referred to as
coded DSSs. Using coding techniques, coded DSSs possess
many practical features and benefits such as high reliability,
efficient repairability, robustness, and security [7]. Recently,
the aspect of minimizing the communication cost, e.g., the
required rate or bandwidth of privately querying the databases
with the desired requests and downloading the corresponding
information from the databases has attracted a great deal of
attention in the information theory and coding communities.
Thus, the renewed interest in PIR primarily focused on the
study and design of efficient PIR protocols for coded DSSs
(see, e.g., [8]–[15]).

A recently proposed generalization of the PIR prob-
lem [16]–[20] addresses private computation (PC) for func-
tions of the stored messages, also denoted as private function
retrieval [21]. In PC a user has access to a given number
of databases and intends to compute a function of messages
stored in these databases. This function is kept private from the
databases, as they may be under the control of an adversary.
The PC rate, defined as the ratio of the desired amount of
information and the total amount of downloaded information
is the main performance metric in this line of research.
Accordingly, the PC capacity is defined as the maximum of
all achievable PC rates over all possible PC protocols. In [16],
[21], the capacity and achievable rates for the case of privately
computing a given linear function, referred to as private linear
computation (PLC), were derived as a function of the number
of messages and the number of databases, respectively, for the
scenario of noncolluding replicated databases. Interestingly,
the obtained PLC capacity is equal to the PIR capacity of [10].
The extension to the coded case is addressed in [18]–[20].
In particular, in [18] we proposed a PLC scheme based on
maximum distance separable (MDS) coded storage. The pre-
sented scheme is able to achieve the MDS-coded PIR capacity,
i.e., the capacity of PIR over noncolluding MDS-coded DSSs,
established in [12], referred to as the MDS-PIR capacity in
the sequel. In [19], private polynomial computation (PPC)
over t colluding and systematically coded databases was con-
sidered by generalizing the star-product PIR scheme of [14].
An alternative PPC approach was recently proposed in [20]
by employing Reed-Solomon coded databases with Lagrange
encoding. For low code rates, the scheme improves on the PC
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rate of [19]. In [22], we proposed two PPC protocols inspired
by the ones from [19], [20] and showed that improved PC
rates can be obtained when the number of messages is small.
The PC capacity for the case where the candidate functions
evaluations are the stored messages plus the evaluation of
an arbitrary nonlinear function of them was derived in [23].
The special case of private monomial computation (PMC) was
addressed in [24], where the PMC capacity for an asymptoti-
cally large field size and under a mild technical condition on
the size of the base field was derived. The technical condition
on the size of the base field can be shown to be satisfied
for a sufficiently large base field. Recently, PC was also
extended to the single server scenario (all messages are stored
uncoded on a single server) with side information in [25], [26],
where the authors derived the capacity with both coded and
uncoded side information under two different privacy condi-
tions on the identities of the messages of the desired linear
combination.

Finally, a separate but relevant form of PC, the private
search (PS) problem [17] considers mapping records replicated
over n noncolluding databases to binary search patterns. Each
pattern represents the search result of one value out of a
set of candidate alphabets. The asymptotic capacity, i.e., the
information retrieval rate for PS with a large alphabet size,
of privately retrieving one search pattern is found to match the
asymptotic capacity of PIR for the special case of balanced
PS. In a balanced PS scenario, the nonlinearly dependent
search patterns are assumed to contain equal amount of
information.

In another line of research, for the case of noncolluding
databases, two PIR protocols for a DSS where data is stored
using a non-MDS linear code, were proposed in [15], and
the protocols are shown to achieve the nonasymptotic and
asymptotic MDS-PIR capacity, respectively, for a large class
of linear codes. The first family of non-MDS codes for
which the PIR capacity is known was found in [27], [28].
Further, PIR on linearly-coded databases for the case of
colluding databases was also proposed in [13]–[15], [29]. For
the PC case with noncolluding databases, however, capac-
ity results for arbitrary linearly-coded DSSs have not been
addressed so far in the open literature to the best of our
knowledge.

In this work, we intend to fill this void. Specifically,
we prove a converse bound for the coded PLC capacity for
a family of non-MDS storage codes considered in [15] (see
Theorem 2). The significance of our PLC converse is that
it depends on the rank of the coefficient matrix obtained
from all μ candidate linear combinations. As a result, it is
valid for any number of messages f and any number of
candidate linear combinations μ. Further, a capacity-achieving
PLC scheme for DSSs with noncolluding databases, where
data is stored using codes from the above-mentioned family
of codes, is proposed. Essentially, the proposed PLC scheme
both extends the optimal PIR scheme for coded DSSs in [15]
and the PLC scheme from MDS-coded DSSs in [18], strictly
generalizing the replication-based PC schemes of [16], [21].
As for the optimality of the achievable PLC rate, we prove
that the achievable rate matches the PLC converse bound of

Theorem 2 and hence settle the coded PLC capacity (see
Theorem 3).

This paper extends our previous work in [1] in several
aspects and presents these novel results in a comprehensive
fashion, highlighted as follows. We present the proof of
Lemma 3 required for the proof of the PLC converse bound
and provide a comprehensive description of the query genera-
tion algorithm, elaborating it with a detailed running example.
Further, we prove the optimality of our PLC scheme through
Lemma 4 and highlight the privacy-preserving features of our
PLC scheme over linearly-coded DSSs.

The remainder of the paper is organized as follows.
Section II outlines the notation and basic definitions, then
the problem of PLC from coded DSSs and the system model
are presented. We derive the converse bound for an arbitrary
number of messages and linear combinations in Section III.
A capacity-achieving PLC scheme for linearly-coded storage
with an MDS-PIR capacity-achieving code is presented in
Section IV. Some conclusions are drawn in Section V.

II. PRELIMINARIES

A. Notation

We denote by N the set of all positive integers and let N0 �
{0} ∪ N, [a] � {1, 2, . . . , a}, and [a : b] � {a, a + 1, . . . , b}
for a, b ∈ N, a ≤ b. Random and deterministic quantities
are carefully distinguished as follows. A random variable is
denoted by a capital Roman letter, e.g., X , while its realization
is denoted by the corresponding small Roman letter, e.g., x.
Vectors are boldfaced, e.g., X denotes a random vector and x
denotes a deterministic vector, respectively. The notation X ∼
Y is used to indicate that X and Y are identically distributed.
Random matrices are represented by bold sans serif letters,
e.g., X, where X represents its realization. In addition, sets
are denoted by calligraphic uppercase letters, e.g., X , and
X c denotes the complement of a set X in a universe set.
We denote a submatrix of X that is restricted in columns by
the set I by X|I . For a given index set S, we also write
XS and YS to represent

{
X(v) : v ∈ S

}
and

{
Yj : j ∈ S

}
,

respectively. Furthermore, some constants and functions are
also depicted by Greek letters or a special font, e.g., X. The
function H (X) represents the entropy of X , and I (X ;Y )
the mutual information between X and Y . The binomial
coefficient of a over b, a, b ∈ N0, is denoted by

(
a
b

)
where(

a
b

)
= 0 if a < b.

We use the customary code parameters [n, k] to denote a
code C over the finite field Fp of blocklength n and dimension
k, where p is a power of a prime number. A generator matrix
of C is denoted by GC . A set of coordinates of C , I ⊆ [n],
of size k is said to be an information set if and only if GC |I is
invertible. (·)T denotes the transpose operator, while rank (V)
denotes the rank of a matrix V. The function χ(x) denotes
the support of a vector x, i.e., the set of indices i such that
xi �= 0, and the linear span of a set of vectors {x1, . . . , xa},
a ∈ N, is denoted by span{x1, . . . , xa}.

We now proceed with a general description for the prob-
lem statement of private linear function computation from
linearly-coded DSSs.
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Fig. 1. System model for PLC from an [n, k] coded DSS storing f messages.

B. Problem Statement and System Model

The PLC problem for coded DSSs is described as follows.
We consider a DSS that stores in total f independent messages
W(1), . . . ,W(f), where each message W(m), m ∈ [f ], consists
of L symbols W

(m)
1 , . . . , W

(m)
L chosen independently and uni-

formly at random from Fp. Thus, H(W(m)) = L, ∀m ∈ [f ] (in
p-ary units). Let L � βk, for some β, k ∈ N. The DSS stores
the f messages encoded using an [n, k] code as follows. First,
the symbols of each message W(m), m ∈ [f ], are presented
as a random β × k matrix over Fp, i.e., W(m) =

(
W

(m)
i,j

)
, i ∈

[β], j ∈ [k]. Second, let W
(m)
i =

(
W

(m)
i,1 , . . . , W

(m)
i,k

)
, i ∈ [β],

denote a message vector corresponding to the i-th row of
W(m). Each W

(m)
i is encoded by an [n, k] code C over

Fp into a length-n codeword C
(m)
i =

(
C

(m)
i,1 , . . . , C

(m)
i,n

)
.

The βf generated codewords C
(m)
i are then arranged in the

array C =
(
(C(1))T| . . . |(C(f))T

)T
of dimensions βf × n,

where C(m) =
(
(C(m)

1 )T| . . . |(C(m)
β )T

)T
. The code symbols

C
(m)
1,j , . . . , C

(m)
β,j , m ∈ [f ], for all f messages are stored on

the j-th database, j ∈ [n].
We consider the case of n noncolluding databases. In PLC,

a user wishes to privately compute exactly one linear function
evaluation X(v) =

(
X

(v)
1 , . . . , X

(v)
L

)
, out of μ candidate linear

combinations X(1), . . . ,X(μ) from the coded DSS. The μ-tuple(
X

(1)
l , . . . , X

(μ)
l

)T
, ∀ l ∈ [L], is mapped by a deterministic

matrix V of size μ × f over Fp by(
X

(1)
l , . . . , X

(μ)
l

)T = Vμ×f

(
W

(1)
l , . . . , W

(f)
l

)T
. (1)

The user privately selects an index v ∈ [μ] and wishes to
compute the v-th function while keeping the requested func-
tion index v private from each database. Here, we also assume
that the rank of V is equal to rank (V) = r ≤ min{μ, f} and
the indices corresponding to a basis for the row space of V are
denoted by the set L � {�1, . . . , �r} ⊆ [μ]. In order to retrieve
the desired linear combination X(v), v ∈ [μ], from the coded
DSS, the user sends a query Q

(v)
j to the j-th database for all

j ∈ [n] as illustrated in Fig. 1. Since the queries are generated
by the user without any prior knowledge of the realizations
of the candidate functions, the queries are independent of the

candidate linear combinations. In other words, we have

I
(
X(1), . . . ,X(μ) ;Q(v)

1 , . . . , Q(v)
n

)
= 0, ∀ v ∈ [μ].

In response to the received query, database j sends the answer
A

(v)
j back to the user. A

(v)
j is a deterministic function of

Q
(v)
j and the data stored in the database. Thus, by the data

processing inequality, ∀ v ∈ [μ],

H
(
A

(v)
j

∣∣∣ Q
(v)
j , Cj

)
= H

(
A

(v)
j

∣∣∣ Q
(v)
j ,W[f ]

)
= 0, ∀ j ∈ [n],

where Cj �
(
C

(1)
1,j , . . . , C

(1)
β,j , C

(2)
1,j , . . . , C

(f)
β,j

)T
denotes the f

coded chunks that are stored in the j-th database.
To preserve user’s privacy, the query-answer function must

be identically distributed for each possible desired function
index v ∈ [μ] from the perspective of each database j ∈ [n].
In other words, the queries and answer strings of the scheme
corresponding to each database must be independent from the
desired function index. Moreover, the user must be able to
reliably decode the desired linear function evaluation X(v).
Accordingly, we define a PLC protocol for [n, k] coded DSSs
as follows.

Consider a DSS with n noncolluding databases storing f
messages using an [n, k] code. The user wishes to retrieve
the v-th function evaluation X(v), v ∈ [μ], from the available
information Q

(v)
j and A

(v)
j , j ∈ [n]. For a PC protocol, the

following conditions must be satisfied ∀ v, v′ ∈ [μ], v �= v′,
and ∀ j ∈ [n],

[Privacy] (Q(v)
j , A

(v)
j ,X[μ]) ∼ (Q(v′)

j , A
(v′)
j ,X[μ]), (2a)

[Recovery] H
(
X(v)

∣∣ A
(v)
[n] , Q

(v)
[n]

)
= 0. (2b)

From an information-theoretic perspective, the efficiency of
a PLC protocol is measured by the PLC rate, which is defined
as follows.

Definition 1 (PLC Rate and Capacity for Linearly-Coded
DSSs): The rate of a PLC scheme, denoted by R, is defined
as the ratio of the desired function size L over the total
required download cost, i.e., R � L

D , where D is the total
required download cost. The PLC capacity is the maximum of
all achievable PLC rates over all possible PLC protocols for
a given [n, k] storage code.

C. MDS-PIR Capacity-Achieving Codes

In [15], a PIR protocol for any linearly-coded DSS that
uses an [n, k] code to store f messages, named Protocol 1,
is proposed. The PIR rate of Protocol 1 can be derived by
finding a PIR achievable rate matrix of the underlying storage
code C , which is defined as follows.

Definition 2 ([15, Def. 10]): Let C be an arbitrary [n, k]
code. A ν × n binary matrix ΛPIR

κ,ν(C ) is said to be a PIR
achievable rate matrix for C if the following conditions are
satisfied.

1) The Hamming weight of each column of ΛPIR
κ,ν is κ, and

2) for each matrix row λi, i ∈ [ν], χ(λi) always contains
an information set of C , where χ(λi) denotes the support
of the vector λi.

In other words, each coordinate j of C , j ∈ [n], appears
exactly κ times in {χ(λi)}i∈[ν], and every set χ(λi) contains
an information set of C .

Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on February 18,2022 at 12:00:44 UTC from IEEE Xplore.  Restrictions apply. 



850 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 3, MARCH 2022

Example 1: Consider a [4, 2] code C with generator

matrix GC =
(

1 0 1 1
0 1 1 1

)
. One can verify that ΛPIR

1,2 =(
1 0 1 0
0 1 0 1

)
is a valid PIR achievable rate matrix for C

with (κ, ν) = (1, 2). This is true given that, column-wise,
the Hamming weight of each column in ΛPIR

1,2 is κ = 1. On the
other hand, row-wise, χ(λ1) = {1, 3} and χ(λ2) = {2, 4} are
two information sets of C . 	

In [15], it is shown that the MDS-PIR capacity [12] can
be achieved using Protocol 1 for a special class of [n, k]
codes. In particular, to achieve the MDS-PIR capacity using
Protocol 1, the [n, k] storage code should possess a specific
underlying structure as given by the following theorem.

Theorem 1 ([15, Cor. 1]): Consider a DSS that uses an
[n, k] code C to store f messages. If a PIR achievable rate
matrix ΛPIR

κ,ν(C ) with κ
ν = k

n exists, then the MDS-PIR capacity

CMDS-PIR �
(
1 − k

n

) [
1 −

(k

n

)f
]−1

is achievable.
This gives rise to the following definition.
Definition 3 ([15, Def. 13]): Given an [n, k] code C , if a

PIR achievable rate matrix ΛPIR
κ,ν(C ) with κ

ν = k
n exists, then

the code C is referred to as an MDS-PIR capacity-achieving
code, and the matrix ΛPIR

κ,ν(C ) is called an MDS-PIR capacity-
achieving matrix.

Accordingly, one can easily see that the [4, 2] code C given
in Example 1 is an MDS-PIR capacity-achieving code. Note
that the class of MDS-PIR capacity-achieving codes includes
MDS codes, cyclic codes, Reed-Muller codes, and certain
classes of distance-optimal local reconstruction codes [15].
In Section IV, we present a PLC protocol and a general
achievable rate for any rank (V) = r by using the PIR
achievable rate matrix ΛPIR

κ,ν of an [n, k] code.

III. CONVERSE BOUND

In [27], [28], the PIR capacity for a coded DSS using an
MDS-PIR capacity-achieving code is shown to be equal to
the MDS-PIR capacity. In this section, we derive a converse
bound for the PLC rate (Theorem 2 below) by adapting the
converse proof of [28, Thm. 4] to the linearly-coded PLC
problem, where the storage code is an MDS-PIR capacity-
achieving code. Then, we show that the PLC capacity matches
the MDS-PIR capacity (i.e., the PIR capacity for a DSS where
data is encoded and stored using an MDS code). The converse
is valid for any number of messages f and candidate linear
functions μ. The following theorem states an upper bound on
the PLC capacity for a coded DSS where data is stored using
an MDS-PIR capacity-achieving code.

Theorem 2: Consider a DSS with n noncolluding databases
that uses an [n, k] MDS-PIR capacity-achieving code C to
store f messages. Then, the rate R of any PLC protocol is
upper bounded by

R ≤ CPLC �
[
1 +

r−1∑
v=1

(
k

n

)v
]−1

=
(
1 − k

n

) [
1−

(k

n

)r
]−1

,

where r is the rank of the linear mapping from (1).

Note that by simply assuming that the candidate functions
are linearly independent linear combinations, i.e., μ = r,
the PLC problem reduces to PIR from [n, k] linearly-encoded
DSSs. If these linear combinations are also uniformly distrib-
uted, the proof of Theorem 2 follows directly from the PIR
capacity of [28, Thm. 4]. However, by providing a formal
proof for Theorem 2, we confirm that with added computation,
i.e., μ > r, we can not achieve a better rate. In the following,
we present a general converse proof for dependent messages
and detail the conditions that lead to this conclusion. Before
we proceed with the converse proof, we provide some general
results.
1) From the condition of privacy,

H
(
A

(v)
j

∣∣ X(v),Q
)

= H
(
A

(v′)
j

∣∣ X(v),Q
)
, (3)

where v �= v′, v, v′ ∈ [μ], and Q �
{
Q

(v)
j : v ∈ [μ], j ∈

[n]
}

denotes the set of all queries. Although this seems to
be intuitively true, a proof of this property is still required
and can be found in [12].

2) Consider a PLC protocol for a coded DSS that uses an
[n, k] code C to store f messages.
Lemma 1 (Independence of Answers From k Databases
Forming an Information Set): For any information set
I ⊆ [n], |I| = k, of the [n, k] linear storage code C ,
and for any v ∈ [μ],

H
(
A

(v)
I

∣∣ Q)
=

∑
j∈I

H
(
A

(v)
j

∣∣ Q)
. (4)

Moreover, (4) is true conditioned on any subset of linear
combinations XV , V ⊆ [μ], i.e.,

H
(
A

(v)
I

∣∣ XV ,Q
)

=
∑
j∈I

H
(
A

(v)
j

∣∣ XV ,Q
)
. (5)

The proof of Lemma 1 is a simple extension of [12, Lem. 1]
based on [11, Lem. 1] and is presented in Appendix A.

Next, we state Shearer’s Lemma, which represents a very
useful entropy method for combinatorial problems.

Lemma 2 (Shearer’s Lemma [30]): Let S be a collection
of subsets of [n], with each j ∈ [n] included in at least κ
members of S . For random variables Z1, . . . , Zn, we have∑

S∈S H(ZS) ≥ κ H(Z1, . . . , Zn).
For our converse proof for the coded PLC problem, we also

need the following lemma, whose proof is presented in
Appendix B.

Lemma 3: Consider the linear mapping V = (vi,j) defined
in (1) with rank (V) = r where vi1,j1 , . . . , vir ,jr are the
entries corresponding to the pivot elements of V. It fol-
lows that

(
X(i1), . . . ,X(ih)

)
and

(
W(j1), . . . ,W(jh)

)
are

identically distributed, for some h ∈ [r]. In other words,
H

(
X(i1), . . . ,X(ih)

)
= hL, h ∈ [r].

Now, we are ready for the converse proof. By [15, Lem. 2],
since the code C is MDS-PIR capacity-achieving, there exist ν
information sets I1, . . . , Iν such that each coordinate j ∈ [n]
is included in exactly κ members of I = {I1, . . . , Iν} with
κ
ν = k

n .

Applying the chain rule of entropy we have H
(
A

(v)
[n]

∣∣
XV ,Q

)
≥ H

(
A

(v)
Ii

∣∣ XV ,Q
)
, ∀ i ∈ [ν], where V ⊆ [μ] is

arbitrary.
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Let v ∈ V and v′ ∈ Vc � [μ] \ V . Following similar steps
as in the proof given in [12], [31], we get

ν H
(
A

(v)
[n]

∣∣ XV ,Q
)

≥
ν∑

i=1

H
(
A

(v)
Ii

∣∣ XV ,Q
)

(a)
=

ν∑
i=1

⎛
⎝∑

j∈Ii

H
(
A

(v)
j

∣∣ XV,Q
)⎞⎠(b)

=
ν∑

i=1

⎛
⎝∑

j∈Ii

H
(
A

(v′)
j

∣∣ XV,Q
)⎞⎠

(a)
=

ν∑
i=1

H
(
A

(v′)
Ii

∣∣ XV ,Q
) (c)

≥ κ H
(
A

(v′)
[n]

∣∣ XV ,Q
)

= κ
[
H

(
A

(v′)
[n] ,X(v′) ∣∣ XV ,Q

)
− H

(
X(v′) ∣∣ A

(v′)
[n] ,XV ,Q

)]
(d)
= κ

[
H

(
X(v′) ∣∣ XV ,Q

)
+ H

(
A

(v′)
[n]

∣∣ XV ,X(v′),Q
)
− 0

]
(e)
= κ

[
H

(
X(v′) ∣∣ XV)

+H
(
A

(v′)
[n]

∣∣ XV ,X(v′),Q
)]

,

where (a) follows from (5); (b) is because of (3); (c) is
due to Shearer’s Lemma; (d) is from the fact that the v′-th
linear combination X(v′) is determined by the answers A

(v′)
[n]

and all possible queries Q; and finally, (e) follows from the
independence between all possible queries and the messages.
Therefore, we can conclude that

H
(
A

(v)
[n]

∣∣ XV ,Q
)

≥ κ

ν
H

(
X(v′) ∣∣ XV)

+
κ

ν
H

(
A

(v′)
[n]

∣∣ XV ,X(v′),Q
)

=
k

n
H

(
X(v′) ∣∣ XV)

+
k

n
H

(
A

(v′)
[n]

∣∣ XV ,X(v′),Q
)
, (6)

where we have used Definition 3 to obtain (6).
Since there are in total μ linear combinations and L �

{�1, . . . , �r} ⊆ [μ] is the set of row indices corresponding to
the selected basis for the row space of V, we can recursively
use (6) r − 1 times to obtain

H
(
A

(�1)
[n]

∣∣ X(�1),Q
)

≥
r−1∑
v=1

(k

n

)v

H
(
X(�v+1)

∣∣ X{�1,...,�v})
+

(k

n

)r−1

H
(
A

(�r)
[n]

∣∣ X{�1,...,�r},Q
)

(a)

≥
r−1∑
v=1

(k

n

)v

H
(
X(�v+1)

∣∣ X{�1,...,�v}) (b)
=

r−1∑
v=1

(k

n

)v

L, (7)

where (a) follows from the nonnegativity of entropy, and
(b) holds since H

(
X(�v+1)

∣∣ X{�1,...,�v}) = H
(
X(�v+1)

)
= L

(see Lemma 3). Here, we also remark that the recursive steps
follow the same principle of the general converse for DPIR
from [17, Thm. 1]. In [17], the authors claim that the general
converse for the DPIR problem strongly depends on the
chosen permutation of the indices of the candidate functions.
However, for the PLC problem, the index permutation of the
candidate linear functions intuitively follows from finding a
basis for V. Now,

L = H
(
X(�1)

) (a)
= H

(
X(�1)

∣∣Q)
− H

(
X(�1)

∣∣ A
(�1)
[n] ,Q

)
︸ ︷︷ ︸

=0

= H
(
A

(�1)
[n]

∣∣∣ Q)
− H

(
A

(�1)
[n]

∣∣∣ X(�1),Q
)

(b)

≤ H
(
A

(�1)
[n]

∣∣∣ Q)
−

r−1∑
v=1

(k

n

)v

L, (8)

where (a) follows since any message is independent of the
queries Q, and by knowing the answers A

(�1)
[n] and the queries

Q, one can determine X(�1), and (b) holds because of (7).
Finally, the converse proof is completed by showing that

R =
L∑n

j=1 H
(
A

(�1)
j

) ≤ L

H
(
A

(�1)
[n]

) (a)

≤ L

H
(
A

(�1)
[n]

∣∣Q)
(b)

≤ 1

1 +
∑r−1

v=1

(
k
n

)v = CPLC,

where (a) is due to the fact that conditioning reduces entropy,
and we apply (8) to obtain (b).

It can be easily seen that the converse bound of Theorem 2
matches the MDS-PIR capacity CMDS-PIR for f = r files given
in Theorem 1. The capacity-achieving PLC scheme is provided
in the following section.

IV. PRIVATE LINEAR COMPUTATION FROM CODED DSSS

One of the main results of this paper is the derivation of
the PLC capacity for a coded DSS where data is encoded and
stored using a linear code from the class of MDS-PIR capacity-
achieving codes [15]. Based on the PLC converse bound of
Theorem 2, in this section we construct a capacity-achieving
PLC scheme. Our capacity-achieving PLC scheme is also a
generalization of the replication-based PLC scheme in [16].
Although the two schemes are build upon a different PIR
construction, both schemes adapt the underlying PIR con-
struction for dependent virtual messages through an index
assignment structure. Moreover, in order to optimize the down-
load rate, both schemes deploy a sign assignment structure
to induce redundancy within the queries of the modified
underlying PIR construction. In this section, we first present
our modified underlying PIR construction with Algorithm 1 in
Section IV-A. Then, we elaborate on the sign assignment
procedure in Section IV-C. In Theorem 3 we settle the PLC
capacity for a DSS where data is stored using an MDS-PIR
capacity-achieving code.

Theorem 3: Consider a DSS with n noncolluding databases
that uses an [n, k] MDS-PIR capacity-achieving code C to
store f messages. Then, the PLC capacity is equal to CPLC,
where r is the rank of the linear mapping from (1).

We remark that since all MDS codes are MDS-PIR capacity-
achieving codes, it follows that if rank (V) = f , then the PLC
capacity for an MDS-coded DSS [18] is equal to the MDS-PIR
capacity CMDS-PIR.

We now start by constructing a query generation algorithm
for a coded PIR-like scheme, where its dependent virtual
messages represent the evaluations of the μ candidate linear
combinations. A PIR-like scheme achieves a private retrieval
of the desired virtual message by following three important
design principles: 1) Enforcing symmetry across databases.
Each database is queried for an equal number of symbols
and the query structure does not depend on the individual
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database, i.e., the scheme structure is fixed for all databases.
2) Enforcing symmetry across virtual messages. 3) Exploiting
side information represented by undesired information down-
loaded to maintain message symmetry.

Given that the messages are stored using an [n, k] MDS-PIR
capacity-achieving code C , we can construct a ν×n MDS-PIR
capacity-achieving matrix ΛPIR

κ,ν of Definition 2, and obtain the
PIR interference matrices Aκ×n and B(ν−κ)×n as given by the
following definition.

Definition 4 ([15]): For a given ν × n PIR achievable rate
matrix ΛPIR

κ,ν(C ) = (λu,j), we define the PIR interference
matrices Aκ×n = (ai,j) and B(ν−κ)×n = (bi,j) for the code
C as

ai,j � u if λu,j = 1, ∀j ∈ [n], i ∈ [κ], u ∈ [ν],
bi,j � u if λu,j = 0, ∀j ∈ [n], i ∈ [ν − κ], u ∈ [ν].

Note that in Definition 4, for each j ∈ [n], distinct values
of u ∈ [ν] should be assigned for all i. Thus, the assignment
is not unique in the sense that the order of the entries of
each column of A and B can be permuted. Moreover, for j ∈
[n], let Aj � {ai,j : i ∈ [κ]} and Bj � {bi,j : i ∈ [ν − κ]}.
Note that the j-th column of Aκ×n contains the row indices
of ΛPIR

κ,ν whose entries in the j-th column are equal to 1, while
B(ν−κ)×n contains the remaining row indices of ΛPIR

κ,ν . Hence,
it can be observed that Bj = [ν] \ Aj , ∀ j ∈ [n].

Next, for the sake of illustrating our query generation
algorithm, we make use of the following definition.

Definition 5: By S(u|Aκ×n) we denote the set of column
coordinates of matrix Aκ×n = (ai,j) in which at least one of
its entries is equal to u, i.e., S(u|Aκ×n) � {j ∈ [n] : ∃ ai,j =
u, i ∈ [κ]}.

As a result, we require the size of the message to be L =
νμ · k (i.e., β = νμ).

A. Query Generation for PLC

Before running the main algorithm to generate the query
sets, the following index preparation for the coded symbols
stored in each database is performed.

1) Index Preparation: The goal is to make the symbols
queried from each database to appear to be chosen randomly
and independently from the desired linear function index. Note
that the function is computed separately for the t-th row of
all messages, t ∈ [β]. Therefore, similar to the PLC scheme
in [16] and the MDS-coded PLC scheme in [18], we apply a
permutation that is fixed across all coded symbols for the t-th
row to maintain the dependency across the associated message
elements. Let π(·) be a random permutation function over [β],
and let

U
(v′)
t,j � vv′Cπ(t),j , t ∈ [β], j ∈ [n], v′ ∈ [μ], (9)

denote the t-th permuted symbol associated with the v′-
th virtual message X(v′) stored in the j-th database, where
Ct,j �

(
C

(1)
t,j , . . . , C

(f)
t,j

)T
and vv′ represents the v′-th row

vector of the matrix Vμ×f = (vi,j). The permutation π(·) is
randomly selected privately and uniformly by the user.

2) Preliminaries: The query generation procedure is sub-
divided into μ rounds, where in each round τ we generate
the queries based on the concept of τ -sums as defined in the
following.

Definition 6 (τ -sum): For τ ∈ [μ], a sum U
(v1)
i1,j + U

(v2)
i2,j +

· · · + U
(vτ )
iτ ,j , j ∈ [n], of τ distinct symbols is called a τ -sum

for any (i1, . . . , iτ ) ∈ [β]τ , and {v1, . . . , vτ} ⊆ [μ] determines
the type of the τ -sum.

Since we have
(
μ
τ

)
different selections of τ distinct elements

out of μ elements, a τ -sum can have
(
μ
τ

)
different types. For

a requested linear function evaluation indexed by v ∈ [μ],
a query set Q

(v)
j , j ∈ [n], is composed of μ disjoint subsets of

queries, each subset of queries is generated by the operations
of each round τ ∈ [μ]. In a round we generate the queries
for all possible

(
μ
τ

)
types of τ -sums. For each round τ ∈ [μ]

the corresponding query subset is further subdivided into two
subsets Q

(v)
j (D; τ) and Q

(v)
j (U ; τ). The first subset Q

(v)
j (D; τ)

corresponds to τ -sums with a single symbol from the desired
function evaluation and τ − 1 symbols from the evaluations
of undesired functions, while the second subset Q

(v)
j (U ; τ)

corresponds to τ -sums with symbols only from the evaluations
of undesired functions. Here, D is an indicator for “desired
function evaluations,” while U an indicator for “undesired
functions evaluations.” Note that we require κμ−(τ−1)(ν −
κ)τ−1 distinct instances of each τ -sum type for every query
set Q

(v)
j . To this end, the algorithm will generate κn auxiliary

query sets Q
(v)
j (ai,j ,D; τ), i ∈ [κ], where each query requests

a distinct symbol from the desired function evaluation and
τ − 1 symbols from undesired functions evaluations, and
(ν − κ)n auxiliary query sets Q

(v)
j (bi,j ,U ; τ), i ∈ [ν − κ],

to represent the query sets of symbols from the undesired
functions evaluations for each database j ∈ [n]. We utilize
these sets to generate the query sets of each round according
to the PIR interference matrices Aκ×n and B(ν−κ)×n.

To illustrate the key concepts of the coded PLC scheme,
we use the following example, i.e., Example 2, as a running
example for this section.

Example 2: Consider f = 4 messages W(1), W(2), W(3),
and W(4) that are stored in a DSS using the [4, 2] MDS-
PIR capacity-achieving code C given in Example 1 for which

ΛPIR
1,2 =

(
1 0 1 0
0 1 0 1

)
, A1×4 = ( 1 2 1 2), and

B1×4 = ( 2 1 2 1), are a PIR achievable rate matrix
with (κ, ν) = (1, 2) and the corresponding PIR interference
matrices A1×4 and B1×4, respectively, according to Defini-
tion 4. Suppose that the user wishes to obtain a linear function
evaluation X(v) from a set of μ = 4 candidate linear functions,
whose Vμ×f from (1) is given by

V4×4 =

⎛
⎜⎜⎜⎝

1 0 0 1
1 1 0 0
2 1 0 1
4 1 0 3

⎞
⎟⎟⎟⎠ .

We simplify notation by letting xt,j = U
(1)
t,j , yt,j = U

(2)
t,j ,

zt,j = U
(3)
t,j , and wt,j = U

(4)
t,j for all t ∈ [β], j ∈ [n], where

β = νμ = 16. First, let the desired linear function index be
v = 1. 	
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The query sets for all databases are generated by
Algorithm 1 through the following procedures.1

3) Initialization (Round τ = 1): In the initialization step,
the algorithm generates the auxiliary queries for the first round.
This round is described in lines 5 to 11 of Algorithm 1,
where we have τ = 1 for the τ -sum. At this point, Algo-
rithm 1 invokes the subroutine Initial-Round given in
Algorithm 2 to generate Q

(v)
j (ai,j ,D; 1), i ∈ [κ], such that

each of these query sets contains α1 = κμ−1 distinct symbols.
Furthermore, to maintain function symmetry, the algorithm
asks each database for the same number of distinct symbols
of all other linear functions evaluations in Q

(v)
j (ai,j ,U ; 1),

i ∈ [κ], resulting in a total number of
(
μ−1

1

)
κμ−1 symbols.

As a result, the queried symbols in the auxiliary query sets
for each database are symmetric with respect to all function
evaluation vectors indexed by v′ ∈ [μ].

In the following steps, we will associate the symbols of
undesired functions evaluations in κ groups, each placed in
the undesired query sets Q

(v)
j (ai,j ,U ; 1), i ∈ [κ]. Since this

procedure produces κ undesired query sets for each database,
database symmetry is maintained.

Example 2 (Continued): The initialization step is described
in the following. Algorithm 1 starts with τ = 1 to generate
auxiliary query sets Q

(v)
j (ai,j ,D; 1), Q

(v)
j (ai,j ,U ; 1), i ∈ [κ],

for each database j ∈ [n]. Starting at line 6 of Algorithm 1,
since ν = 2, we have the row indicator u ∈ [2]. This
indicator is first used to identify the code coordinates per-
taining to different entries u = ai,j , as specified by the
interference matrix A1×4. For example, when u = 1, following
Definition 5, we have S(1|Aκ×n) = {1, 3}. In line 7 of
Algorithm 1, for j ∈ {1, 3}, algorithm Initial-Round is
invoked to generate the desired and undesired query subsets
Q

(1)
j (1,D; 1) and Q

(1)
j (1,U ; 1). The set Q

(1)
j (1,D; 1) queries

α1 = κμ−1 = 1 distinct instances of the desired function
evaluation xt,j and the set Q

(1)
j (1,U ; 1) α1 = 1 distinct

instances of the remaining linear functions evaluations yt,j ,
zt,j , and wt,j . To this end, the row indicator u is passed to
the subroutine Initial-Round, i.e., Algorithm 2, where
it is used to determine the indices of the queried sym-
bols. For example, the first auxiliary query set for u =
1 generated by Algorithm 2 is given by Q

(1)
j (1,D; 1) =

{U (1)
(1−1)·1+1,j} = {x1,j}, j ∈ {1, 3}. A similar process is

followed for Q
(1)
j (1,U ; 1). The same process is then repeated

for u = 2. By the end of this step, we have queried να1 =
2 distinct instances of the desired function evaluation xt,j

and by message symmetry, να1 = 2 distinct instances of the
remaining functions evaluations yt,j , zt,j , and wt,j . In total,
the first round of queries comprises nκα1μ = 16 symbols,
which can be written in the form n

(
μ
1

)
κμ−1+1(ν−κ)1−1. The

resulting auxiliary query sets for the first round of queries

1Note that a query Q
(v)
j sent to the j-th database usually indicates the

row indices of the symbols that the user requests, while the answer A
(v)
j to

the query Q
(v)
j refers to the particular symbols requested through the query.

In Algorithm 1, with some abuse of notation for the sake of simplicity, the
generated queries are sets containing their answers.

Algorithm 1 Q-Gen
Input : v, μ, κ, ν, n, Aκ×n, and B(ν−κ)×n

Output: Q
(v)
1 , . . . , Q

(v)
n

1 for τ ∈ [μ] do
2 Q

(v)
j (D; τ )← ∅, Q

(v)
j (U ; τ )← ∅, j ∈ [n]

3 ατ ← κμ−1 +
�τ−1

h=1

�
μ−1

h

�
κμ−(h+1)(ν − κ)h

4 � Generate query sets for the initial
round

5 if τ = 1 then
6 for u ∈ [ν] do
7 for j ∈ S(u|Aκ×n) do
8 Q

(v)
j (u,D; τ ), Q

(v)
j (u,U ; τ )←

Initial-Round(u, ατ , j, v, τ )
9 end

10 end
11 end
12 � Generate query sets for the following

rounds τ > 1
13 else
14 for u ∈ [ν] do
15 � Generate desired symbols for the

following rounds τ > 1
16 for j ∈ S(u|Aκ×n) do
17 Q

(v)
j (u,D; τ )← Desired-Q(u, ατ , j, v, τ )

18 end
19 � Generate side information for the

following rounds τ > 1
20 for j ∈ S(u|B(ν−κ)×n) do
21 Q

(v)
j (u,U ; τ − 1)← Exploit-SI(u, Q

(v)
1 (u,U , τ −

1), . . . , Q
(v)
n (u,U , τ − 1), j, v, τ )

22 end
23 end
24 � Generate the final desired query sets

for the following rounds τ > 1
25 for j ∈ [n] do
26 Q̃

(v)
j (U ; τ − 1)← �

i∈[ν−κ]

Q
(v)
j (bi,j ,U ; τ − 1)

27 Q̃
(v)
j (1,U ; τ − 1), . . . , Q̃

(v)
j (κ,U ; τ − 1)←

Partition
�
Q̃

(v)
j (U ; τ − 1)

�
28 for i ∈ [κ] do
29 Q

(v)
j (ai,j ,D; τ )←

SetAddition
�
Q

(v)
j (ai,j ,D; τ ), Q̃

(v)
j (i,U ; τ − 1)

�
30 end
31 end
32 � Generate the query sets of undesired

symbols by forcing message symmetry for
the following rounds τ > 1

33 for u ∈ [ν] do
34 for j ∈ S(u|Aκ×n) do
35 Q

(v)
j (u,U ; τ )← M-Sym

�
Q

(v)
j (u,D; τ ), j, v, τ

�
36 end
37 end
38 end
39 for u ∈ [ν] do
40 for j ∈ S(u|Aκ×n) do
41 Q

(v)
j (D; τ )← Q

(v)
j (D; τ ) ∪Q

(v)
j (u,D; τ )

42 Q
(v)
j (U ; τ )← Q

(v)
j (U ; τ ) ∪Q

(v)
j (u,U ; τ )

43 end
44 end
45 end
46 for j ∈ [n] do

47 Q
(v)
j ← �

τ∈[μ]

�
Q

(v)
j (D; τ ) ∪Q

(v)
j (U ; τ )

�

48 end
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are shown in Table I(a), where we highlight in red the row
indicator u ∈ [ν] as specified by the interference matrix A1×4,
i.e., u = a1,j . 	

4) Desired Function Symbols for Rounds τ > 1: For the
following rounds a similar process is repeated in terms of
generating auxiliary query sets containing distinct code sym-
bols from the desired linear function evaluation U(v) =
(U (v)

t,j ). This is accomplished in lines 16 to 18 by calling the
subroutine Desired-Q, given in Algorithm 3, to generate
Q

(v)
j (ai,j ,D; τ), i ∈ [κ], such that each of these query sets

contains (ατ − 1) − ατ−1 + 1 =
(
μ−1
τ−1

)
κμ−(τ−1+1)(ν −

κ)τ−1 distinct symbols from the desired linear function
evaluation U(v).

Example 2 (Continued): After successfully generating the
queries for να1 = 2 distinct symbols from the desired linear
function evaluation in the initiation step, for round τ = 2 we
generate the queries for the following ν(α2−α1) = 6 symbols.
To this end, subroutine Desired-Q, given in Algorithm 3,
generates auxiliary query sets Q

(1)
j (ai,j ,D; 2) containing dis-

tinct symbols from the desired linear function evaluation,
following a process similar to Algorithm 2, however with a
different method for determining the queried indices. The out-
put of lines 16 to 18 after calling the subroutine Desired-Q
for u ∈ [2] is as follows. 	

5) Side Information Exploitation: In lines 20 to 22, we gen-
erate the side information query sets Q

(v)
j (bi′,j ,U ; τ − 1),

i′ ∈ [ν − κ], from the auxiliary query sets Q
(v)
1 (ai,1,U ; τ −

1), . . . , Q(v)
n (ai,n,U ; τ − 1), i ∈ [κ], of the previous round

τ − 1, τ ∈ [2 : μ], by applying the subroutine Exploit-SI,
given by Algorithm 4. This subroutine is extended from [16]
based on our coded storage scenario. These side information
query sets will be exploited by the user to ensure the recovery
and privacy of the PLC scheme. Note that in Algorithm 4 the
function Reproduce(j, Q(v)

j′ (u,U ; τ − 1)), j′ ∈ [n] \ {j},
simply reproduces all the queries in the auxiliary query set
Q

(v)
j′ (u,U ; τ − 1) with a different coordinate j.

Next, we update the desired query sets Q
(v)
j (ai,j ,D; τ) in

lines 25 to 31. First, the function Partition
(
Q̃

(v)
j (U ; τ−1)

)
denotes a procedure that divides a set into κ disjoint equally-
sized subsets. This is viable since based on the subrou-
tine Initial-Round and the following subroutine M-Sym,
one can show that

∣∣Q̃(v)
j (U ; τ − 1)

∣∣ =
(
μ−1
τ−1

)
κμ−(τ−1)(ν −

κ)(τ−1)−1 · (ν − κ) for each round τ ∈ [2 : μ], which is
always divisible by κ. Secondly, we assign the new query set
of desired symbols Q

(v)
j (ai,j ,D; τ) for the current round by

using an element-wise set addition SetAddition(Q1, Q2).
The element-wise set addition is defined as

{
qil

+ qi′
l
: qil

∈
Q1, qi′

l
∈ Q2, l ∈ [ρ]

}
with |Q1| = |Q2| = ρ, where ρ is an

appropriate integer.

Algorithm 2 Initial-Round
Input : u, ατ , j, v, and τ
Output: ϕ(v)(u,D; τ ), ϕ(v)(u,U ; τ )

1 ϕ(v)(u,D; τ )← ∅, ϕ(v)(u,U ; τ )← ∅
2 for l ∈ [ατ ] do
3 ϕ(v)(u,D; τ )← ϕ(v)(u,D; τ ) ∪ �U

(v)
(u−1)·ατ +l,j

�
4 ϕ(v)(u,U ; τ )← ϕ(v)(u,U ; τ ) ∪	

μ�
v′=1

�
U

(v′)
(u−1)·ατ +l,j

� \ �U
(v)
(u−1)·ατ +l,j

�


5 end

Algorithm 3 Desired-Q
Input : u, ατ , j, v, and τ
Output: ϕ(v)(u,D; τ )

1 ϕ(v)(u,D; τ )← ∅
2 for l ∈ [ατ−1 : ατ − 1] do
3 ϕ(v)(u,D; τ )← ϕ(v)(u,D; τ ) ∪ �U

(v)
l·ν+u,j

�
4 end

Algorithm 4 Exploit-SI

Input : u, Q
(v)
1 (u,U ; τ − 1), . . . , Q

(v)
n (u,U ; τ − 1), j, v, and

τ
Output: ϕ(v)(u,U ; τ − 1)

1 ϕ(v)(u,U ; τ − 1)← ∅
2 for i ∈ [κ] do
3 for j′ ∈ [n] \ {j} do
4 if u = ai,j′ then
5 ϕ(v)(u,U ; τ − 1)← Reproduce(j, Q

(v)

j′ (u,U ; τ − 1))
6 break
7 end
8 end
9 end

Algorithm 5 M-Sym

Input : Q
(v)
j (u,D; τ ), j, v, and τ

Output: ϕ(v)(u,U ; τ )
1 ϕ(v)(u,U ; τ )← ∅
2 for (v1, . . . , vτ ) ∈ Lexico(Πτ ), v /∈ {v1, . . . , vτ} do
3 ϕ(v)(u,U ; τ )← ϕ(v)(u,U ; τ ) ∪ �U

(v1)
i1,j + . . . + U

(vτ )
iτ ,j

�
such that ∀ z ∈ [τ ], ∃U

(v)
iz ,j +

�
x∈[τ ]
x �=z

U
(vx)
∗,j ∈ Q

(v)
j (u,D; τ )

4 end

6) Message and Index Symmetry in Rounds τ > 1: In
lines 33 to 37, the subroutine M-Sym, given in Algorithm 5,
is invoked to generate the undesired query sets Q

(v)
j (ai,j ,U ; τ)

by utilizing message symmetry. This subroutine selects sym-
bols of undesired functions evaluations to generate τ -sums that
enforce symmetry in the round queries. The procedure resem-
bles the subroutine M-Sym proposed in [16]. In Algorithm 5,
Πτ denotes the set of all possible selections of τ distinct
indices in [μ] and Lexico(Πτ ) denotes the corresponding set
of ordered selections (the indices (v1, . . . , vτ ) of a selection
of Πτ are ordered in natural lexicographical order). Further,
the notation U

(vx)
∗,j implies that the row index of the symbol

can be arbitrary. This is the case since only the function
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TABLE I

AUXILIARY QUERY SETS FOR EACH ROUND. HIGHLIGHTED IN RED IS THE ROW INDICATOR u ∈ [ν] USED IN DETERMINING THE INDICES OF THE
QUERIED SYMBOLS. THE MAGENTA DASHED ARROWS AND THE CYAN ARROWS INDICATE THAT THE Exploit-SI

ALGORITHM AND THE M-Sym ALGORITHM ARE USED, RESPECTIVELY

indices (v1, . . . , vτ ) are necessary to determine iz , ∀ z ∈ [τ ].
As a result, symmetry over the linear functions is maintained.
Moreover, for Q

(v)
j (ai,j ,U ; τ), i ∈ [κ], we obtain for each

τ ∈ [2 : μ] the remaining τ -sum types, such that each of these
query sets contains

(
μ−1

τ

)
κμ−(τ−1+1)(ν − κ)τ−1 symbols.

Example 2 (Continued): After determining the indices of
the desired function evaluations to be queried by each data-
base in round τ = 2, we now deploy side information to
preserve the privacy for the desired function evaluation. This is
accomplished by generating τ -sums of each possible type and
enforcing index symmetry. To this end, we first identify the
side information available from the previous round, queried
from the neighboring databases, to be exploited according
to the interference matrix B1×4. This process is performed
by invoking Algorithm 4, which generates complement sets
for the undesired query sets of the previous round, i.e.,
Q

(1)
j (ai,j ,U ; 1). The output of Algorithm 4 for u ∈ [2] is

as follows.

Next, these side information query sets are then partitioned
into κ groups to be exploited in different Q

(1)
j (ai,j ,D; 2) for

i ∈ [κ]. The partitioning guarantees that the two sets used
in generating the τ -sums in lines 28 to 30 of Algorithm 1

have an equal number of elements. Finally, message and
index symmetry is guaranteed by passing the generated aux-
iliary query sets Q

(1)
j (ai,j ,D; 2) to the subroutine M-Sym,

i.e., Algorithm 5, that generates τ -sums of the remaining types.
Table I(b) illustrates the final query sets for round τ = 2.

Next, Steps 4) to 6) are repeated for the following rounds,
i.e., for τ = 3 and τ = 4. As a result, the queries for
ν(α3 − α2) = 6 and the remaining ν(α4 − α3) = 2 distinct
symbols of the desired linear function evaluation are generated
by rounds τ = 3 and τ = 4, respectively. Tables I(c)-(d)
illustrate the final query sets for the final rounds. Similar to
Table I(a), in Tables I(b)–(d), we highlight with red the row
indicator u = a1,j ∈ [ν] and with magenta dashed arrows
the side information exploitation following the algorithm
Exploit-SI, i.e., Algorithm 4. In addition, we indicate with
cyan arrows the message symmetry enforcement procedure
following the algorithm M-Sym, i.e., Algorithm 5, and with
red the resulting index symmetry in Q

(1)
j (a1,j ,U ; τ) based on

the desired linear function indices. 	
7) Query Set Assembly: Finally, in lines 39 to 48, we assem-

ble each query set from disjoint query subsets obtained in
all τ rounds. It can be shown that Q

(v)
j (D; τ) ∪ Q

(v)
j (U ; τ)

contains κμ−(τ−1)(ν − κ)τ−1 τ -sums for every τ -sum type
as follows. For the initialization round, τ = 1, from
Step 3) above, the total number of queried symbols is given
by

∣∣Q(v)
j (D; 1) ∪ Q

(v)
j (U ; 1)

∣∣ = κ
[
κμ−1 +

(
μ−1

1

)
κμ−1

]
=(

μ
1

)
κμ−1+1(ν − κ)1−1.
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For the following rounds, τ ∈ [2 : μ], from Steps 4), 5),
and 6) above, we have∣∣Q(v)

j (D; τ) ∪ Q
(v)
j (U ; τ)

∣∣
= κ

[(
μ − 1
τ − 1

)
κμ−τ (ν − κ)τ−1+

(
μ − 1

τ

)
κμ−τ (ν − κ)τ−1

]
=

(
μ

τ

)
κμ−τ+1(ν − κ)τ−1.

In summary, the total number of queries generated by
Algorithm 1 is

n∑
j=1

∣∣Q(v)
j

∣∣ = n

μ∑
τ=1

(
μ

τ

)
κμ−τ+1(ν − κ)τ−1. (10)

Remark 1: The practicality of implementing an algorithm
is measured by the algorithm’s computational complexity, i.e.,
the number of operations an algorithm performs to complete
its task. The computational complexity of Algorithm 1 can be
shown to be O(nκμνμ−1). To the best of our knowledge, our
scheme shares this exponential time complexity with the PIR
and PLC schemes of [10], [12], [15], [16].

Example 2 (Continued): In the final step, i.e., Step 7), the
auxiliary query subsets are aggregated according to the row
indicator u = ai,j , i ∈ [κ], to form the final query set for each
database. Note that, by utilizing the code coordinates forming
an information set in the code array, it can be shown that
the side information based on B(ν−κ)×n can be decoded. For
example, in round 3, since {2, 4} is an information set of the
storage code C , the code symbols y6,1+z4,1 and y6,3+z4,3 can
be obtained by knowing y6,2+z4,2 and y6,4+z4,4, from which
the corresponding symbols x6,1 and x6,3 can be obtained by
canceling the side information. Hence, the symbols from the
desired linear function evaluation can be obtained. 	

B. Recovery of Desired Function Evaluation

The construction of the capacity-achieving PLC scheme
is, so far, a PIR-like scheme that privately retrieve a virtual
message from a linearly-coded DSS. This virtual message
represents the evaluation of the desired function over coded
symbols, however, the user wishes to privately retrieve the
evaluation of the desired function over the original information
symbols. As a result, due to the fact that we are performing
computation over coded storage, the coded PLC scheme
includes two extra steps over other uncoded PC schemes.
Namely, decoding the desired function evaluation symbols
and decoding and canceling the side information. Thus, the
correct decoding of the desired function evaluation relies on
the correct decoding of the queried symbols from all virtual
messages. To this end, in the following, we show that we
can reliably recover the desired function evaluation from the
queried symbols.

The main argument behind the reliable recovery of the
desired function evaluation is the fact that the candidate
linear functions and linear coding commute, i.e., evaluating a
function over coded symbols is equal to encoding the symbols
of the function evaluation. To see that, let t̂ = π(t) where
t, t̂ ∈ [β] be the private permutation selected by the user and let
gj =

(
g1,j, g2,j , . . . , gk,j

)T
be the j-th column of the generator

matrix GC for the [n, k] linear storage code. One can verify,
from (9), that for all v′ ∈ [μ], we have

U
(v′)
t,j = vv′C t̂,j =

f∑
i=1

vv′,iC
(i)

t̂,j
=

f∑
i=1

vv′,i

k∑
h=1

W
(i)

t̂,h
gh,j

=
k∑

h=1

gh,j

f∑
i=1

vv′,iW
(i)

t̂,h
=

k∑
h=1

X
(v′)
t̂,h

gh,j, (11)

where (X(v′)
1,1 , . . . , X

(v′)
1,k , X

(v′)
2,1 , . . . , X

(v′)
β,k ) =

(X(v′)
1 , . . . , X

(v′)
k , X

(v′)
k+1, . . . , X

(v′)
L ) = X(v′). Note

that (11) resembles the process of encoding the segment(
X

(v′)
t̂,1

, . . . , X
(v′)
t̂,k

)
of the candidate linear function evaluation

X(v′) using the [n, k] storage code. Thus, one can consider
the construction of our PLC scheme, so far, as a coded PIR
scheme over a virtual coded DSS storing the evaluations of
the candidate functions. As a result, using the same [n, k]
linear code for decoding the symbols obtained from the
answer sets guarantees the reliable retrieval of the desired
function evaluation.

C. Sign Assignment and Redundancy Elimination

In contrast to simple PIR solutions, in PLC we have the
opportunity to exploit the dependencies induced by perform-
ing computations over the same set of messages, i.e., the
f independent messages W(1), . . . ,W(f), while keeping the
requested index v private from each database. As shown in
the recent PC literature (e.g., [16], [18], [21]), one is able
to exploit this dependency to optimize the download cost
by trading communication overhead with offline computation
performed at the user side. To this end, our proposed PLC
scheme is further constructed with two additional procedures:
Sign assignment and redundancy elimination.

After running Algorithm 1, the user will know which
row indices of the stored code symbols he/she is going to
request. To reduce the total number of downloaded symbols,
the linear dependency among the candidate linear functions
evaluations is exploited. To this end, an initial sign σ

(v)
t is

first privately generated by the user with a uniform distribution
over {−1, +1} for all t ∈ [β], i.e., the same selected sign
is identically applied to all symbols from different function
evaluations with the same index.

Next, depending on the desired linear function index v ∈
[μ], we apply a deterministic sign assignment procedure that
carefully scales each pre-signed symbol in the query sets,
i.e., σ

(v)
t U

(v′)
t,j , v′ ∈ [μ], by {+1,−1}. The intuition behind

the sign assignment is to introduce a uniquely solvable equa-
tion system from the different τ -sum types given the side
information available from all other databases. By obtaining
such a system of equations in each round, the user can
determine some of the queries offline to decode the desired
linear function evaluations and/or interference, thus reducing
the download rate. On the other hand, the privately selected
initial sign for σ

(v)
t , t ∈ [β], acts as a one-time pad that

randomizes over the deterministic sign assignment procedure.
Here, we adopt a similar sign assignment process over each
symbol in the query sets, as introduced in [16, Sec. IV-B].
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The sign assigned to each symbol relies on two factors; the
position of that symbol within a lexicographically ordered
τ -sum query and whether that query contains a symbol from
the desired function evaluation. Specifically, let a lexicograph-
ically ordered τ -sum query be q, i.e., q �

∑τ
�=1 U (v�),

v1 < · · · < vτ .2 Let Δ(v)(q) denote the position of the symbol
associated with the desired function evaluation X(v) within q,
where Δ(v)(q) = 0 indicates that the query does not contain
a symbol from the desired function evaluation. The queries
generated by Algorithm 1 are sorted by round τ ∈ [μ], then
the queries for each round are divided into subgroups indexed
by S(Δ(v)(q)) ∈ {1, 2, . . .} based on the value of Δ(v)(q) for
each query. Finally, a ‘+’ or ‘−’ sign is assigned as a function
of the subgroup index S(·) and the position of each symbol
relative to the desired function evaluation symbol in each
query. The details of the sign selection follow [16, Sec. IV-B]
and are omitted for brevity. Moreover, we remark that after
sign assignment, the recovery condition of the scheme is
inherently maintained since it can be seen as a coded PIR
scheme as Protocol 1 in [15]. The key idea of redundancy
elimination is illustrated with Example 2 below.

Example 2 (Continued): First, without loss of generality,
we assume the initial sign assignment σ

(v)
t = +1 is privately

selected by the user for all t ∈ [β]. Next, we apply the
sign assignment process to the query sets for v = 1. The
resulting queries after sign assignment are shown in Table II.
In the following, we show that we can remove some redundant
queries from each database and the desired linear function
evaluation X(1) can still be recovered. For example, in the
first round (τ = 1), it can be easily seen from Vμ×f that the
queried symbols of zt,j and wt,j can be generated offline by
the user as functions of xt,j and yt,j , i.e., zt,j = xt,j + yt,j

and wt,j = 3xt,j + yt,j for all t ∈ [β] and j ∈ [n].
Moreover, the coefficient vectors associated with xt,j and yt,j

are the two row basis vectors of the coefficient matrix Vμ×f

(r = rank (V) = 2). Thus, we can represent the candidate
functions evaluations in terms of this basis with a deterministic
linear mapping V̂μ×r = (v̂i,l) of size μ × r as follows:

(xt,j , yt,j, zt,j, wt,j)T =

⎛
⎜⎜⎜⎝

1 0
0 1
1 1
3 1

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
V̂μ×r

(xt,j , yt,j)T. (12)

That is true due to the commutativity of the performed linear
functions, i.e., the storage code and the candidate functions,
and given that the coefficient matrix Vμ×f of the candidate
functions is available to the user. Thus, the queries for these
symbols, i.e., zt,j and wt,j , are redundant and can be removed
from the query sets regardless of which function evaluation
is desired by the user. Next, in round τ = 2 and for the 1st
database, from the deterministic linear mapping V̂μ×r = (v̂i,l)
of (12), one can verify that

v̂3,2(y7,1 − w3,1) − v̂4,2(y5,1 − z3,1)
− (v̂3,1 · v̂4,2 − v̂4,1 · v̂3,2)x3,1 − v̂4,1x5,1 + v̂3,1x7,1

2Segment and database indices are suppressed here for clarity.

= 1(y7,1 − w3,1) − 1(y5,1 − z3,1) − (1 · 1 − 3 · 1)x3,1

−3x5,1 + 1x7,1

= 1(y7,1 − 3x3,1 − 1y3,1) − (y5,1 − x3,1 − y3,1)
+2x3,1 − 3x5,1 + x7,1

= (x7,1 + y7,1) − (3x5,1 + y5,1) = z7,1 − w5,1, (13)

and hence we do not need to download the 2-sum z7,1−w5,1.
Similarly, we can do the same exercise for the other databases.
The redundant queries are marked in blue in Table II, shown
at the top of the following page, and the indices t ∈ [β] of
the desired linear function evaluations are marked in red. This
completes the recovery part. The resulting PLC rate becomes
νμ·k
D = 16·2

12·4 = 2
3 , which is equal to the PLC capacity in

Theorem 3 with r = rank (V) = 2. This demonstrates the
optimality of the PLC scheme. 	

From the above example we note the following.

• There is a deterministic linear mapping, i.e., V̂μ×r , that
captures the dependencies among the candidate linear
functions evaluations.

• We maintain the same characteristics of the query con-
struction that facilitate the exploitation of the linear
dependencies among the candidate functions evaluations
as for the uncoded PLC scheme in [16]. These charac-
teristics include index assignment, sign assignment, and
lexicographic ordering of the elements of τ -sums. As a
result, some of the queries become redundant and can
be removed from the query sets while maintaining the
decodability of the desired function evaluation.

• The candidate functions are computed over the coded
symbols stored in each database individually. Conse-
quently, from the perspective of the queries of each
database, the linear dependency among the symbols of
the candidate functions evaluations is present, i.e., the fact
that the computation is performed over coded storage is
transparent to the redundancy elimination process. This
can be seen from (13).

• The number of redundant queries depends on the rank of
the coefficient matrix Vμ×f , i.e., r = rank (V). This can
be clearly observed for the 1-sum symbols where out of
the μ symbols, μ− r can be computed offline given that
the symbols of the functions evaluations associated with
the r row basis vectors of Vμ×f are available.

Based on this insight we can state the following lemma for
redundancy elimination.

Lemma 4: For all v ∈ [μ], each database j ∈ [n], and
based on the side information available from the databases,
any

(
μ−r

τ

)
τ -sum types out of all possible

(
μ
τ

)
types in each

round τ ∈ [μ − r] of the query sets are redundant.
The proof of Lemma 4 is presented in Appendix C. The

proof is based on the insight that the redundancy resulting
from the linear dependencies between virtual messages is also
present with MDS-PIR capacity-achieving codes. Since both
repetition and MDS codes are MDS-PIR capacity-achieving
codes, Lemma 4 generalizes both [16, Lem. 1] and [18,
Lem. 1]. We now make the final modification to our PLC
query sets by first directly applying the sign assignment over
σ

(v)
t U

(v′)
t,j , v′ ∈ [μ], and then remove the τ -sums corresponding
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TABLE II

PLC QUERY SETS FOR v = 1 AFTER SIGN ASSIGNMENT FOR ROUNDS ONE TO FOUR FOR THE [4, 2] CODE OF EXAMPLE 2, f = 4 MESSAGES,
AND μ = 4 CANDIDATE LINEAR FUNCTIONS. RED SUBSCRIPTS INDICATE THE INDICES OF THE DESIRED LINEAR

FUNCTION EVALUATIONS. THE REDUNDANT QUERIES ARE MARKED IN BLUE

to the redundant τ -sum types from every round τ ∈ [μ − r].
Note that the amount of redundancy is dependent on the rank
of the functions matrix, rank (V) = r ≤ min{μ, f}, thus
generalizing the MDS-coded PLC case. Finally, we generate
the queries Q

(v)
[n] .

D. Privacy

It is worth mentioning that the queries generated by Algo-
rithm 1 inherently satisfy the privacy condition of (2a), which
is guaranteed by satisfying the index, message, and database
symmetry principles as for all the PIR schemes in [10], [12],
[15]. That is, given the fixed and symmetric construction of
the queries, there always exists a one-to-one mapping between
the queries, Q

(v)
j ↔ Q

(v′)
j , ∀ j ∈ [n], in terms of the queried

symbols indices t ∈ [β], where v, v′ ∈ [μ] and v �= v′. Given
this one-to-one mapping along with a permutation π(t) over
these indices privately selected uniformly at random by the
user, the queries are indistinguishable and equally likely.

Moreover, after the sign assignment process a one-to-one
mapping between the assigned signs is found following a
simple sign flipping rule for σ

(v′)
t . The rule states that, to map

the queries of Q
(v)
j to Q

(v′)
j , one should only consider the

desired queries, i.e., queries that contain symbols associated
with X(v′). For such queries in each round τ , we replace
σ

(v′)
∗ with −σ

(v′)
∗ for each element to the right of the desired

function evaluation symbol U
(v′)
∗ in the lexicographically

ordered query if the query is sorted in a subgroup indexed with
an odd S (see Section IV-C). Next, we flip the sign of elements
to the left of the desired function evaluation symbol U

(v′)
∗ if

the query is sorted in a subgroup indexed with an even S. The
proof of the correctness of this rule and thus the privacy after
sign assignment follows directly from [16, Sec. VI-B]. For
completeness, we also show with Example 2 that the user’s
privacy is still maintained after the sign assignment process
and the removal of redundant queries.

Example 2 (Continued): Here, to show that the queries
are identically distributed regardless of the desired func-
tion evaluation index v ∈ [4] we show that there exists a

one-to-one mapping from the queries for v = 1 to the queries
for v = 3 for all databases. Without loss of generality,
we again assume the initial sign assignment σ

(3)
t = +1 to be

privately selected by the user for all t ∈ [β]. In Table III, shown
at the top of the following page, the queries for v = 3 are
presented following Algorithm 1 and the sign assignment
process. From Tables II and III one can verify that the index
and sign mapping

Databases 1 and 3:

(3, 2, 5, 9, 6, 4, 11, 8, 13, σ
(1)
13 , 15, 14, 12, σ

(1)
10 )

v=3−−→ (5, 3, 2, 6, 4, 9, 13, 11, 8,−σ
(3)
8 , 14, 12, 15,−σ

(3)
10 )

(14a)

Databases 2 and 4:

(4, 1, 6, 10, 5, 3, 12, 7, 14, σ
(1)
14 , 16, 13, 11, σ

(1)
9 )

v=3−−→ (6, 4, 1, 5, 3, 10, 14, 12, 7,−σ
(3)
7 , 13, 11, 16,−σ

(3)
9 )

(14b)

converts the queries for v = 1 to the queries for v = 3. To see
this mapping, compare the τ -sums xt1,1−yt2,1 and xt′1,1−yt′2,1

from the queries of the first database of Tables II and III,
respectively. It can be seen that the indices t1 = 3 and t2 =
2 of the queries for v = 1 convert into the indices t′1 = 5 and
t′2 = 3 of the queries for v = 3, respectively. Thus, we have the
mapping ((t1, t2) → (t′1, t

′
2)) = ((3, 2) → (5, 3)) and due to

the index symmetry of the query construction this mapping is
fixed for all symbols with the corresponding indices. A similar
comparison between the remaining τ -sums results in the index
and sign mapping of (14a) and (14b). One can similarly verify
that there exists a mapping from the queries for v = 1 to the
queries for v = 2 or those for v = 4, i.e., Q

(1)
[n] ↔ Q

(2)
[n] and

Q
(1)
[n] ↔ Q

(4)
[n] . Since a permutation over these indices, i.e., π(t)

and an initial sign σ
(v)
t are uniformly and privately selected

by the user independently of the desired function evaluation
index v, these queries are equally likely and indistinguishable.

Next, to verify the correctness of the sign flipping rule stated
above, consider the desired queries of the third round (τ = 3)
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TABLE III

PLC QUERY SETS FOR v = 3 AFTER SIGN ASSIGNMENT FOR ROUNDS ONE TO FOUR FOR THE [4, 2] CODE OF EXAMPLE 2, f = 4 MESSAGES,
AND μ = 4 CANDIDATE LINEAR FUNCTIONS. RED SUBSCRIPTS INDICATE THE INDICES OF THE DESIRED LINEAR

FUNCTION EVALUATIONS. THE REDUNDANT QUERIES ARE MARKED IN BLUE

for the query sets for v = 3 in Table III. For database 1, one
can verify that the query x6,1 − y4,1 + z9,1 is sorted in the
subgroup indexed by S = 1. As S is odd and no element
is placed to the right of z9,1 the signs are left unchanged.
However, for the query −x8,1 − z11,1 + w4,1 which falls in
the subgroup indexed by S = 2, the sign of the element to the
left of z11,1, i.e., x8,1, is flipped. That is, we change σ

(3)
8 to

−σ
(3)
8 and that matches the sign mapping in (14a) for this

query. Moreover, due to index symmetry, this mapping also
matches the sign assignment for σ

(3)
8 for the query −y8,1 −

z13,1 + w6,1.
Finally, for redundancy elimination, we only need to show

that for any desired index v ∈ [4], the removed redundant
τ -sums can be chosen to be of the same type. For instance,
let us consider the 1st database. In the 2nd round, see Table III,
it can be shown that the queries for desired index v = 3 satisfy
the equation

(1 · 1 − 3 · 1)(x5,1 − y3,1) − 1(x7,1 − w3,1) − 3z3,1 − 1z5,1

+1z7,1

= −2(x5,1 − y3,1) − (x7,1 − 3x3,1 − y3,1) − 3(x3,1 + y3,1)
−(x5,1 + y5,1) + (x7,1 + y7,1)

= 1(y7,1 − (3x5,1 + y5,1)) = y7,1 − w5,1,

which implies that the 2-sum z7,1−w2,1 can be removed from
the download, since z7,1 can be obtained from downloading
x5,1 − y3,1, x7,1 − w3,1, x2,1 − z3,1, y2,1 − z5,1, and y7,1 −
w5,1. Hence, the redundant τ -sum type for v = 3 can be
chosen to be equal to the redundant τ -sum type for v = 1
(see (13)). A similar argument can be made for v = 2 and
v = 4, which ensures that the privacy of the scheme is not
affected by redundancy elimination. 	

E. Achievable PLC Rate

The resulting achievable PLC rate of Algorithm 1 after
removing redundant τ -sums according to Lemma 4 becomes

R
(a)
=

kνμ

n
∑μ

τ=1

((
μ
τ

)
−

(
μ−r

τ

))
κμ−(τ−1)(ν − κ)τ−1

(b)
=

κνμ

ν
∑μ

τ=1

((
μ
τ

)
−

(
μ−r

τ

))
κμ−(τ−1)(ν − κ)τ−1

=
νμ

(
ν−κ

ν

)
∑μ

τ=1

((
μ
τ

)
−

(
μ−r

τ

))
κμ−τ (ν − κ)τ

...

(c)
=

νμ
(
1 − κ

ν

)
νμ− κrνμ−r

=
(
1 − κ

ν

) [
1 −

(κ

ν

)r]−1

, (15)

where we recall that
(
m
n

)
= 0 if m < n; (a) follows from the

PLC rate in Definition 1, (10), and Lemma 4; (b) follows from
Definition 3; and (c) follows by adapting similar steps as in
the proof given in [18]. Note that the rate in (15) matches the
converse in Theorem 2, which proves Theorem 3.

V. CONCLUSION

We have provided the capacity of PLC from coded DSSs,
where data is encoded and stored using an arbitrary linear code
from a large class of linear storage codes. Interestingly, for the
considered family of linear storage codes, the capacity of PLC
is equal to the corresponding PIR capacity. Thus, privately
retrieving arbitrary linear combinations of the stored messages
does not incur any overhead in rate compared to retrieving a
single message from the databases and provides a significant
advantage over individually downloading each message via a
PIR scheme and combining them offline.

APPENDIX A
PROOF OF LEMMA 1

The proof of Lemma 1 uses the linear independence of
the columns of a generator matrix of C corresponding to an
information set. Consider an information set I of the [n, k]
linear storage code C , |I| = k. The content of the databases
indexed by I, i.e.,

(
Cj , j ∈ I

)
= C|I , can be written

as
(
(W(1))T| . . . |(W(f))T

)T
GC |I

(a)∼
(
(W(1))T| . . . |(W(f))T

)T
,

where by the construction of any [n, k] linear storage code,
if I is an information set of the code C , then GC |I is
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a k × k invertible matrix. (a) follows from [11, Lem. 1]
and the fact that the messages are chosen independently and
uniformly at random from F

β×k
p . Therefore, the content of

any k databases forming an information set is statistically
equivalent to the stored messages. Given that the symbols
of the messages are independent, then the k columns of
C|I are also statistically independent. Finally, since A

(v)
j ,

j ∈ I, are deterministic functions (that are composed of
the μ candidate linear combinations) of independent random
variables {Cj : j ∈ I} and Q, {A(v)

j , j ∈ I} are statistically
independent, and (4) follows.

Now, given that the candidate linear functions are evalu-
ated element-wise over independent and uniformly distributed
symbols, the symbols of each linear combination are also
independent and identically distributed (i.i.d.), i.e., for X(v) =(
X

(v)
1 , . . . , X

(v)
L

)
, X

(v)
1 , . . . , X

(v)
L are i.i.d. according to a

prototype random variable X(v).
Moreover, due to the commutative property of linear func-

tions, linear computation over linearly-encoded symbols is
equivalent to linear encoding of the linear function evalu-
ations. As a result, we can extend the argument of statis-
tical equivalence to linear function evaluations over coded
symbols. In other words, the evaluations of linear functions
over the content of any k databases, forming an informa-
tion set I, are statistically equivalent to the evaluations
of linear functions over the stored messages. Presenting
X(v) =

(
X

(v)
1 , . . . , X

(v)
L

)
in the form X(v) =

(
X

(v)
i,j

)
,

i ∈ [β], j ∈ [k], we have
(
(X(1))T| . . . |(X(μ))T

)T
GC |I ∼(

(X(1))T| . . . |(X(μ))T
)T

. Finally, since we can consider that the
storage encoding is applied on individual function evaluations,
conditioning on any subset of function evaluations XV , |V| =
μv, is equivalent to reducing the problem to the private
computation of μ − μv linear combinations. That is, A

(v)
j ,

j ∈ I, are deterministic functions (that are composed of the
μ−μv candidate linear combinations) of independent random
variables {Cj : j ∈ I} and Q, and {A(v)

j , j ∈ I} are still
statistically independent. Hence, the statistical independence
argument of (5) follows.

APPENDIX B
PROOF OF LEMMA 3

Since each linear function X(v) =
(
X

(v)
1 , . . . , X

(v)
L

)
, v ∈

[μ], contains L i.i.d. symbols, it is clear that ∀ l ∈ [L],

H
(
X(1), . . . ,X(μ)

)
= LH

(
X

(1)
l , . . . , X

(μ)
l

)
, and

H
(
W(1), . . . ,W(f)

)
= LH

(
W

(1)
l , . . . , W

(f)
l

)
.

Let J � {j1, . . . , jh} for some h ∈ [r]. We have

Pr
[
X

(i1)
l , . . . , X

(ih)
l

]
=

∑
wJ c

l

Pr
[
WJ c

l = wJ c

l

]
·Pr

[
X

(i1)
l , . . . , X

(ih)
l

∣∣∣WJ c

l = wJ c

l

]

=
∑
wJ c

l

Pr
[
WJ c

l =wJ c

l

]
·Pr

[
W

(j1)
l , . . . ,W

(jh)
l

∣∣∣WJ c

l = wJ c

l

]
(16)

=
∑
wHc

Pr
[
WJ c

l = wJ c

l

] (1
p

)h

=
(1

p

)h

, (17)

where (16) follows from the fact that there is a linear trans-
formation between X

(i1)
l , . . . , X

(ih)
l and W

(j1)
l , . . . , W

(jh)
l ,

and (17) holds since W
(j1)
l , . . . , W

(jh)
l are i.i.d. over Fp.

Hence, H
(
X

(i1)
l , . . . , X

(ih)
l

)
= h (in p-ary units), which

completes the proof.

APPENDIX C
PROOF OF LEMMA 4

Here we present the main components needed for the proof
of Lemma 4, however the detailed derivations are a direct
application of the proof of [16, Lem. 1, Sec. V-B] and thus
are omitted. The proof of [16, Lem. 1] is adapted to our setup
with the following substitutions.

Let L � {�1, . . . , �r} ⊆ [μ] be the set of candidate
linear combination indices corresponding to a basis of the
row space of the linear combination coefficient matrix Vμ×f ,
where r = rank (V) ≤ min{μ, f}. Then X

(�1)
l , . . . , X

(�r)
l

satisfy H
(
X

(�1)
l , . . . , X

(�r)
l

)
= H

(
X

[μ]
l

)
, ∀ l ∈ [L]. Assume,

without loss of generality, that the rows of the coefficient
matrix are ordered such that the first r rows constitute
the row basis, i.e., (X(1)

l , . . . , X
(r)
l ) = (X(�1)

l , . . . , X
(�r)
l ),

l ∈ [L]. Note that we can represent the candidate functions
evaluations

(
X

(1)
l , . . . , X

(μ)
l ) in terms of the basis candi-

date functions evaluations
(
X

(�1)
l , . . . , X

(�r)
l ) for l ∈ [L]

with a deterministic linear mapping V̂μ×r of size μ × r as(
X

(1)
l , . . . , X

(μ)
l

)T
= V̂μ×r

(
X

(�1)
l , . . . , X

(�r)
l

)T
. As a result,

we have (v̂T
1, . . . , v̂

T
r)

T = Ir, where Ir is the r × r identity
matrix and v̂i is the i-th row vector of the deterministic linear
mapping matrix V̂μ×r .

First, consider the case where the desired function eval-
uation index v = 1. Consider the queries corresponding to
undesired τ -sums, i.e., τ -sums that do not involve any symbols
from the desired function evaluation U(1). There are

(
μ−1

τ

)
different τ -sum types corresponding to such queries which
can be divided into two groups as follows.

• Group 1:
(
μ−1

τ

)
−

(
μ−r

τ

)
τ -sum types for which the

corresponding τ -sums involve at least one element from
the set {U(2),U(3), . . . ,U(r)}.

• Group 2:
(

μ−r
τ

)
τ -sum types for which the correspond-

ing τ -sums do not involve any element from the set
{U(2),U(3), . . . ,U(r)}.

Let q(U (v[τ])) denote a τ -sum as defined in Definition 6
after performing the sign assignment process, i.e., q(U (v[τ])) �∑τ

�=1(−1)�−1U (v�), where v[τ ] = {v1, . . . , vτ} ⊆ [μ], v1 <
· · · < vτ , are the indices of the functions evaluations,
and where the segment indices and the database index are
suppressed to simplify the notation. Let the type of the τ -
sum be presented by the set of distinct indices of functions
evaluations involved in the τ -sum, i.e., the type of q(U (v[τ]))
is represented by v[τ ] = {v1, . . . , vτ}. The key idea is to show
that the symbols of the queries corresponding to Group 2 are
deterministic linear functions of the queries corresponding to
Group 1 when the symbols of the desired function evaluation
U(1) are known. Now, let q0 � q(U (v[τ])), where r <
v1 < · · · < vτ , denote an arbitrary query corresponding
to Group 2. Specifically, we need to show that, when the
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symbols of U(1) queried by the given database are known, i.e.,
successfully decoded, the query q0 can be written as a linear
function of

(
τ+r−1

τ

)
− 1 queries corresponding to Group 1.

These
(
τ+r−1

τ

)
− 1 queries contain elements of the row basis

functions evaluations and elements included in the τ -sum of
q0 and comprise all the τ -sums of types corresponding to the
subsets of size τ of I � [2 : r] ∪ v[τ ], except the type of q0,
i.e., {v1, . . . , vτ}. Now, let Q̃ �

{
q(U (̂i[τ])) : î[τ ] ∈ T

}
be a

set of queries where there is exactly one query corresponding
to each of the

(
τ+r−1

τ

)
− 1 τ -sum types of Group 1, where

T �
{
î[τ ] = {î1, î2, . . . , îτ} ⊂ I : î[τ ] �= v[τ ]

}
. Finally,

assume, without loss of generality, that the subsets of distinct
indices î[τ ] ∈ T are ordered in natural lexicographical order,
i.e., î1 < î2 < · · · < îτ .

Next, from the deterministic linear mapping between
the candidate functions evaluations, V̂μ×r , we have
U

(v�)
∗ = v̂v�,1U

(1)
∗ + · · · + v̂v�,rU

(r)
∗ , � ∈ [τ ], where

(v̂v�,1, . . . , v̂v�,r) = v̂v�
. Now, we need to show that q0 is a

linear function of the queries of Q̃ as follows:

q0 =
∑

î[τ]∈T

h(U (̂i[τ]))q(U (̂i[τ])), (18)

where h(U (̂i[τ])) is a linear coefficient calculated as a function
of the deterministic linear mapping coefficients represented by
the matrix

V̂∗
(r−1)×τ =

⎛
⎜⎜⎝

v̂v1,2 v̂v2,2 · · · v̂vτ ,2

...
... · · ·

...

v̂v1,r v̂v2,r · · · v̂vτ ,r

⎞
⎟⎟⎠

as outlined in [16, Sec. V-B]. Given the above problem setup,
notation, and definitions, one can verify that (18) holds for all
queries corresponding to Group 2 (refer to [16, Sec. V-B] for
the detailed derivation). Thus, a number of

(
μ−r

τ

)
query types

in Group 2 are redundant and can be removed from the query
set.
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