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Abstract—The secrecy gain of Construction A isodual lattices
obtained from rate 1/2 binary tail-biting convolutional codes is
considered. The secrecy gain criterion has been proposed in
lattice coding for the Gaussian wiretap channel to characterize
the secrecy-goodness performance. The higher the secrecy gain,
the smaller the eavesdropper’s success probability of correctly
guessing the transmitted message. This work performs exhaustive
code searches for even lengths up to 108 to find the best isodual
codes obtained from rate 1/2 binary tail-biting convolutional
codes of certain memory constraints in terms of secrecy gain
and investigates the corresponding isodual lattices. Numerical
results indicate that the best results found via this tail-biting
technique perform similarly to the best-known isodual codes from
the conventional pure double-circulant code construction up to
length 40. This approach offers two advantages: (1) it provides
reasonably good codes of “any” even lengths, and (2) practical
maximal-likelihood decoding is available for these codes.

I. INTRODUCTION

In the communication model of a wiretap channel [1], a
single party named Alice wants to communicate with another
party named Bob while keeping the transmitted messages
secure from an unauthorized eavesdropper, Eve. For the Gaus-
sian wiretap channel, it was shown that a lattice-based coset
coding approach could provide secure and reliable communi-
cation [2], [3]. In particular, given a lattice Λb designed for
Bob, to achieve security, one needs to design a lattice wiretap
code (Λe ⊆ Λb) such that Eve’s success probability of correctly
guessing the transmitted message, Pc,e, is minimized. A design
criterion called secrecy gain [2] has been proposed and shown
to be inversely proportional to the upper bound on Pc,e.

The secrecy gain is the maximum attainable value of a
secrecy function, which is determined by the lattice Λe’s theta
series and volume. The secrecy gain study has recently been
extended to the so-called formally unimodular lattices, or
lattices with the same theta series as their duals [4], [5]. It was
shown that formally unimodular lattices share the same secrecy
function property with unimodular and isodual lattices, i.e.,
they all have symmetry points in their secrecy functions. Thus,
formally unimodular, isodual, and unimodular lattices are all
conjectured to achieve the secrecy gain at the symmetry points
of their secrecy functions [2]–[5]. Moreover, it is shown that
Construction A lattices obtained from the formally self-dual
codes (which have the same weight enumerator as their duals,
including isodual codes) can achieve a higher secrecy gain
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than the unimodular lattices. The secrecy gain of Construction
A4 formally unimodular lattices obtained from codes over the
integers modulo 4 has also been studied in [6], [7].

In [5], a systematic approach by tail-biting (TB) the rate
1/2 binary convolutional codes of a given memory to con-
struct isodual codes was proposed. Such binary codes are
referred to as TB isodual codes. To obtain the secrecy gain
of Construction A lattices obtained from isodual codes, the
calculation of the codes’ weight enumerators is necessary, and
long-length good isodual codes in terms of secrecy gain may
be hard to determine via classical algebraic approaches. TB
isodual codes were considered, and their weight enumerators
can be obtained with low-complexity trellis computation even
for large code lengths. High secrecy gains of the Construction
A lattices obtained from TB isodual codes were demonstrated.
This paper further investigates the best TB isodual codes and
presents the following contributions:

• We have performed exhaustive and efficient code searches
to find the best secrecy-good TB isodual codes for
different memory constraints for even lengths up to 108.

• Numerical results are presented to demonstrate that the
best secrecy-good TB isodual codes are comparable (and
often coincide) with the best isodual codes obtained from
the conventional pure double circulant code (PDCC) con-
struction for all even lengths up to 40. While performing
an exhaustive PDCC search is computationally expensive
for lengths greater than 40, a complete code search of
TB isodual codes with a moderate complexity can be
accomplished quickly up to length 108.

• A necessary condition to verify the secrecy-optimality of
a Construction A lattice obtained from a formally self-
dual C of a given length n by considering its weight
enumerator was provided in [5, Th. 46]. This condition
is verified for the best secrecy-good codes compared to
all the possible even-length TB and PDCC isodual codes.
All the best ones in Table I are checked to satisfy the
necessary condition.

The paper is organized as follows: Sec. II recalls general
definitions about codes, lattices, and TB convolutional codes,
Sec. III presents the main results about the calculation of the
secrecy gain for Construction A lattices, Sec. IV describes
the search for secrecy-good TB lattices and finally, Sec. V
discusses the main results and improvements of our search.
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II. DEFINITIONS AND PRELIMINARIES

A. Notation

We denote by N, Z, and R the set of naturals, integers,
and reals, respectively. [i : j] ≜ {i, i+ 1, . . . , j} for i, j ∈ Z,
i ≤ j. Vectors are row vectors and boldfaced, e.g., x. The all-
zero vector is denoted by 0. Matrices and sets are represented
by capital sans serif letters and calligraphic uppercase letters,
respectively, e.g., X and X . Xk×n represents a matrix of size
k × n, and a square matrix of size n is denoted by Xn.
An identity matrix is denoted by I. We denote by wH(x)
the Hamming weight of a vector x ∈ {0, 1}n. We use the
code parameters [n, k] or [n, k, dH] to denote a linear code C
of length n, dimension k, and minimum Hamming distance.
ϕ : {0, 1}n → Zn is defined as the natural embedding, i.e.,
ϕ(x) maps each element x ∈ {0, 1} to the corresponding
integer.

B. Basics on Codes and Lattices

This section briefly reviews well-known concepts related to
codes and lattices.

The weight enumerator of a [n, k] binary code C is

WC (x, y) =
∑
c∈C

xn−wH(c)ywH(c).

A [2k, k] binary code C is a pure double circulant code
(PDCC) if it is generated by G = (Ik Bk), where Bk is a
circulant matrix

Bk =


b1 b2 . . . bk
bk b1 . . . bk−1

...
... . . .

...
b2 b3 . . . b1

.

A (full rank) lattice Λ ⊂ Rn is a discrete additive subgroup
of Rn, which can be represented as Λ = {λ = uLn : u ∈ Zn},
where the n rows of L = Ln form a lattice basis in Rn. The
volume of Λ is vol(Λ) = |det(L)|. The lattice Λ⋆ ⊂ Rn

generated by
(
L−1

)T
is called the dual lattice of Λ. For lattices,

the analog of the weight enumerator of a code is the theta
series, defined as follows.

Definition 1 (Theta series): Let Λ be a lattice, its theta series
is given by

ΘΛ(z) =
∑
λ∈Λ

q∥λ∥2

,

where q ≜ eiπz and Im{z} > 0.
Analogously, the spirit of the MacWilliams identity can be

captured by the Jacobi’s formula [8, eq. (19), Ch. 4]

ΘΛ(z) = vol(Λ⋆)
( i

z

)n
2

ΘΛ⋆

(
−1

z

)
.

A lattice is said to be integral if the inner product of any
two lattice vectors is an integer. An integral lattice such that
Λ = Λ⋆ is called a unimodular lattice. A lattice Λ is called
isodual if it can be obtained from its dual Λ⋆ by (possibly)
a rotation or reflection. In [4], a new and broader family
was presented, namely, the formally unimodular lattices, that

consists of lattices having the same theta series as their duals,
i.e., ΘΛ(z) = ΘΛ⋆(z).

From [5, Prop. 12], a formally unimodular lattice Λ has
vol(Λ) = 1. Hence, the theta series of a formally unimodular
lattice is such that

ΘΛ(z) =
( i

z

)n
2

ΘΛ

(
−1

z

)
.

Lattices can be constructed from binary linear codes via the
so-called Construction A [8], defined as follows.

Definition 2 (Construction A): Let C be a binary [n, k] code,
then ΛA(A ) ≜ 1√

2
(ϕ(C ) + 2Zn) is a lattice.

C. TB Convolutional Codes

An (n, k) binary convolutional code C of memory m is a k-
dimensional subspace of Fn

2 (D), where D is an indeterminate
variable. F2(D) consists of all rational functions in D, such
that the maximum degree of the generator polynomials of C
is m. Hence, a rate k/n convolutional code is a linear mapping

γ : Fk
2(D) → Fn

2 (D)

u(D) 7→ v(D) = u(D)G(D),

where G(D) is a generator matrix with rank k with entries in
F2(D).

One technique to construct a block code from a convo-
lutional code is tail-biting [9], [10], which we define next.
Consider a convolutional code of rate 1/2 and a given memory
m. Let C0 be the [2ℓ, ℓ − m] block code consisting of all
codewords of C obtained by traversing the trellis [10] of C,
collecting code symbols from trellis edge labels along the way,
starting at time 0 in state 0 of the trellis and ending in state 0 at
time ℓ. Similarly, for each of the 2m−1 nonzero states s, let Cs

be the set of sequences obtained by traversing the trellis from
state s at time 0 to state s at time ℓ. The set C = ∪2m

s=0Cs is
a [2ℓ, ℓ] linear block code, known as a tail-biting (TB) code.
By a tail-biting (TB) lattice, we mean a lattice obtained by
Construction A from a TB code.

III. SECRECY GAIN OF CONSTRUCTION A LATTICES

This section presents a secrecy goodness criterion called
secrecy gain [3]. It quantifies the success probability of an
eavesdropper to guess the correct information sent on a wiretap
channel when a lattice Λ is chosen in the coset encoding,
which works as follows: a pair of nested lattices Λe ⊆ Λb is
selected, and the lattice Λb for Bob is written as the union of
2k disjoint cosets Λb = ∪2k

j=1

(
Λe+cj

)
. The information vector

or message s ∈ {0, 1}k is mapped into s 7→ Λe + cj(s) and
Alice chooses a random point x ∈ Λe+cj(s) to send over the
wiretap channel. More details on the error probability analysis
can be found at [3, App. A] or [5, Sec. IV-B].

Definition 3 (Secrecy function and secrecy gain [3, Defs. 1
and 2]): Let Λ be a lattice with volume vol(Λ) = νn. The
secrecy function of Λ is defined by

ΞΛ(τ) ≜
ΘνZn(iτ)

ΘΛ(iτ)
,
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for τ ≜ −iz > 0. The (strong) secrecy gain of a lattice is
given by ξΛ ≜ supτ>0 ΞΛ(τ).

The higher the secrecy gain of a lattice, the more secure the
lattice wiretap code is [3]. Hence, the objective is to design
good lattices to achieve a high secrecy gain. The first family of
lattices studied in the literature was unimodular lattices [11],
[12] due to the tractability of their theta functions. Also, for
unimodular lattices, Belfiore and Solé conjectured that the
following holds.

Conjecture 1 ([4], [13]): The secrecy function of a unimod-
ular lattice attains its maximum at τ = 1.

This result was demonstrated to hold for infinitely many
unimodular lattices [14]. Recently, techniques to extend this
result to formally unimodular lattices constructed from binary
and quaternary codes were discussed in [4], [6], [7], together
with indications of superior results for the secrecy gain, when
compared to unimodular lattices.

The following result facilitates the maximization of the
secrecy function for lattices Λ obtained via Construction A
from formally self-dual codes.

Theorem 1 ([4, Th. 2]): Let C be a formally self-dual code
(including the isodual code). Then[

ΞΛA(C )(τ)
]−1

=
WC

(√
1 + t(τ),

√
1− t(τ)

)
2

n
2

,

where 0 < t(τ) = ϑ2
4(iτ)/ϑ2

3(iτ) < 1. Moreover, define fC (t) ≜
WC (

√
1 + t,

√
1− t) for 0 < t < 1.

Theorem 1 implies that maximizing the secrecy function
ΞΛA(C )(τ) is equivalent to determining the minimum of fC (t)
on t ∈ (0, 1). This optimization process can also be interpreted
as a function of the weight enumerator of the code C .

We have observed that in practice, all Construction A
formally unimodular lattices we studied achieve its strong
secrecy gain at t = 1/

√
2. Furthermore, to investigate the

best secrecy-good formally self-dual codes that maximize the
secrecy gain of a given dimension, we use the secrecy function
ΞΛA(C )(τ) to give a slightly weaker definition of a secrecy-
optimal formally self-dual code.

Definition 4 ([5, Def. 45]): A formally self-dual code C ⋄

of length n is said to be (weakly) secrecy-optimal if for all
τ > 0,

ΞΛA(C⋄)(τ) ≥ ΞΛA(C )(τ)

for any formally self-dual code C of length n.
A necessary condition for a formally self-dual code/isodual

code C to be secrecy-optimal by considering its weight
distribution {Aw(C )}nw=0 was given in [5, Thm. 46].

Theorem 2 ([5, Th. 46]): Given a dimension n ≥ 2, if C ⋄

is secrecy-optimal, then

C ⋄ = argmin
C : formally self-dual

{
n∑

w=0

Aw(C )

w + 1

}
. (1)

Theorem 2 suggests that in order to exactly determine
the secrecy-optimal code C ⋄ of a given length, one can
check if C ⋄ satisfies (1) compared to all the possible weight
enumerators of formally self-dual codes.

Algorithm 1: Computing the weight enumerators and
secrecy gains of TB codes. W total

ℓ,w is the number of
codewords of length 2ℓ and weight w in the TB code.
Wℓ,s,w is the number of paths of length ℓ and weight
w, starting and ending in state s.

1 for each (2, 1) convolutional code C do
2 Find weight enumerator:
3 Initialize W total

ℓ,w = 0, ∀ ℓ = 1, 2, . . . ,MaxDim, ∀w
4 for each state s (among 2m states) do
5 Use the Viterbi algorithm to compute Wℓ,s,w

for ℓ = 1, 2, . . . ,MaxDim, w ≤ 2ℓ
6 W total

ℓ,w = W total
ℓ,w +Wℓ,s,w,∀ ℓ, 0 ≤ w ≤ 2ℓ

7 end
8 For each dimension ℓ, the TB code Cℓ has:
9 WCℓ

(x, y) =
∑2ℓ

w=0 W
total
ℓ,w x2ℓ−wyw.

10 Compute secrecy gain (Theorem 1)
11 Select best code for each ℓ
12 end

IV. SECRECY-GOOD CONSTRUCTION A LATTICES
OBTAINED FROM TB CODES

This work extends and improves on what was initially
proposed in [5]. We present here an efficient and complete
search for secrecy-good Construction A lattices obtained from
TB codes, the TB lattices, which allows the extension to
higher dimensions. The techniques implemented here allow
us, by taking into account the structure of TB convolutional
codes, to exhaustively search for the best codes (resp. lattices)
of each length (resp. dimension) and therefore, present the
best achievable secrecy gain. The current results outperform
the secrecy gains obtained previously in some dimensions.
Observe that here, we only consider formally unimodular
lattices in even dimensions.

One important property we highlight is that (2, 1) TB codes
are isodual, allowing us to apply Theorem 1 for the search of
secrecy-good TB lattices. Proposition 1 states this property.

Proposition 1 ([5, Prop. 50]): Consider a (2, 1) binary con-
volutional code with memory m. Then, any [2ℓ, ℓ] binary linear
(block) code C obtained from it is isodual, for ℓ ≥ m+ 1.

Therefore, the remaining task of the search for secrecy-good
TB lattices is to characterize the weight enumerator of TB
convolutional codes. Algorithm 1 summarizes this procedure,
which uses the Viterbi algorithm (for more details, see [10,
Sec. 12.3]) for computing the weight enumerator WCℓ

(x, y)
for each even TB code length 2ℓ. Based on WCℓ

(x, y), we
calculate ΞΛA(C )(τ) at t = 1/

√
2 according to Theorem 1 and

verify the minimization of fC (t) on t ∈ (0, 1). Finally, the
best secrecy-good TB code is determined over all possible TB
generator matrices. Codes yielding the best secrecy gains for
even lengths 12 ≤ n ≤ 40 are tabulated in Table I.

V. RESULTS AND ANALYSIS

One approach to finding TB codes with good secrecy gain
is to start with codes with good distance properties, that
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TABLE I
COMPARISON OF (STRONG) SECRECY GAINS FOR SEVERAL VALUES OF EVEN DIMENSIONS n.

n
Upper bound for

unimodular lattices [11] ξΛA(C)[5] PDCC m = 3 m = 4 m = 5 m = 6

12 1.60 1.657 1.657 1.657 1.657 1.657 1.657

14 1.78 1.875 1.828 1.828 1.828 1.828 1.828

16 2.21 2.141 2.141 2.141 2.141 2.141 2.141

18 2.49 2.485 2.485 2.485 2.485 2.485 2.485

20 2.81 2.868 2.868 2.813 2.813 2.868 2.813

22 3.20 3.335 3.335 3.243 3.243 3.335 3.335

24 3.88 3.879 3.879 3.674 3.716 3.750 3.879

26 4.43 − 4.356 4.306 4.306 4.356 4.356

28 5.08 − 5.082 4.909 5.019 5.044 5.082

30 5.84 5.843 5.843 5.685 5.759 5.843 5.843

32 7.00 6.748 6.776 6.490 6.641 6.757 6.726

34 8.06 − 7.851 7.460 7.744 7.845 7.771

36 9.31 − 9.150 8.511 8.863 9.083 9.022

38 10.77 − 10.653 9.736 10.281 10.553 10.440

40 12.81 12.364 12.419 11.094 11.903 12.248 12.403

is, codes that have a significant minimum distance and few
codewords of this minimum distance. Such codes can be
found by starting from good convolutional codes [10], but for
given block lengths we can also study codes from searches
specifically performed for TB codes [15]. However, since these
searches focus on minimum distance, they do not capture the
precise optimization of the secrecy gain, which depends on the
entire weight enumerator. Therefore, for short block lengths,
we have exhaustively searched for the best TB codes based
on convolutional codes of memory m up to 6. Table I shows
the results of this search. Note that depending on the block
length, different underlying convolutional codes may optimize
the secrecy gains. Figure 1 visualizes the best TB codes of
lengths up to 40.

For all small even lengths (up to lengths 40), the number of
potential PDCCs to search is small, and the weight enumerator
of each code is easy to compute. Hence, PDCCs can be
optimized for secrecy gain. However, brute force optimization
becomes infeasible as the length enters the practical range,
e.g., when the code length is over 40. In contrast, TB codes
have limited trellis complexity, and as long as the trellis can be
represented, the weight enumerator can easily be computed for
any block length. In this paper, we perform the exhaustive code
search for even lengths up to 108, which is not straightforward
to do via PDCC construction. Figure 1 show that the best TB
codes perform equally to or very close to the best PDCCs.1

Short block length may be of limited practical value for
high secrecy purposes. In Figure 2, we show how the secrecy

1In fact, another observation behind the searches of Figure 1 is that PDCCs
of these lengths are better than the best TB codes, and this fact was not known.
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PDCC
m = 6
m = 5
m = 4
m = 3

Fig. 1. Comparison of the best-found secrecy gains of Construction A lattices
obtained from TB isodual codes with memory m = 3, 4, 5, 6, and the best
PDCCs, for even lengths 12 ≤ n ≤ 40.

gain of TB codes from fixed convolutional codes develop as
the block length increases. In general, low-complexity codes
perform equal to or better than high-complexity ones for short
block lengths. All TB codes in Figure 2 demonstrate that the
secrecy gain grows exponentially as the block length increases.
Still, the increase is faster for the higher complexity codes, as
expected.
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Fig. 2. Secrecy gain evolution for fixed codes. Convolutional codes, with
generator matrices in octal notion, are selected from [10], [15].

In Table I, the upper bound from [11] refers to the secrecy
gain achieved by unimodular lattices. Therefore, one can
expect this bound to be exceeded by formally unimodular
lattices, fact that happened for n = 40. We have checked
that the conditions for applying Theorem 2 are satisfied in
all cases. Boldfaced values indicate the best-known values for
secrecy gain.

Besides the results presented in Table I, other remarkable
ones concerning the secrecy gain of TB lattices in dimensions
not previously studied and outperforming the best-known uni-
modular lattices were also found in the following dimensions

• n = 60, ξΛA(C ) ≈ 54.721,
• n = 80, ξΛA(C ) ≈ 236.191,
• n = 100, ξΛA(C ) ≈ 991.887.

VI. CONCLUSION AND FUTURE WORK

We further investigated the secrecy-good isodual lattices
obtained from rate 1/2 binary TB convolutional codes with
memory up to 6. We showed cases where the secrecy-good
TB isodual codes are compatible with the best-found isodual
codes obtained from the PDCC construction for dimensions
up to 40. While it is computationally expensive to get the
best-found isodual codes via PDCC construction for further
dimensions over 60, the exhaustive code searches to find the
best secrecy-good TB isodual codes of practical complexity
are shown to be manageable up to all even lengths less than
108.

In order to limit the scope of this paper, we have omitted
the discussion of several relevant topics.

• One major advantage of using trellis-based codes is that
efficient decoding is available. TB codes can be decoded
with an iterative decoder, with a complexity of a few
times the use of a Viterbi decoder, and with a performance

close to maximum likelihood. To study this issue in the
context of lattice constructions, we need to enter into
details of signal modulation. We will postpone this for
future work.

• It is known that the trellis structure is also convenient for
the computation of estimates of equivocation [16] (that is,
the remaining entropy about the sent message conditioned
on the eavesdropper’s received signal) in coset coding for
wiretap channels. Moreover; in the context of lattices-
based coset coding, Ling et al. [17] have proposed
another design criterion for wiretap lattice codes, called
the flatness factor, to quantify how much confidential in-
formation can leak to Eve in terms of mutual information,
or equivalently, the concept of equivocation for lattice
coset coding. It is interesting to see how trellis structure
can be beneficial for lattice coset coding.
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