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Abstract—In many applications that employ wireless sensor
networks (WSNs), robustness of distributed inference against
Byzantine attacks is important. In this work, distributed in-
ference is considered when local sensors send M -ary data to
the fusion center. The optimal Byzantine attack policy is then
derived under the assumption that the Byzantine adversary has
the knowledge of the statistics of local quantization outputs. Our
analysis indicates that the fusion center can be blinded such
that the detection error is as poor as a random guess when an
adequate fraction of sensors are compromised.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been studied for

well over a decade [1]. For applications over WSNs, dis-

tributed inference plays an essential role and hence is one of

the key problems to be investigated [2], [3]. In a WSN, simple

inexpensive sensors are deployed to observe a phenomenon of

interest (POI). Due to limited resources at each sensor, the

observed local data is quantized into an M -ary symbol for

transmission to a fusion center (FC), where M ≥ 2. A local

decision rule is thus required at each sensor to convert the

observed data to one of the M symbols. In practice, simple

threshold quantizers are commonly employed; and, therefore,

the local decision rule can be characterized by a set of M − 1
quantization thresholds. The sensors then send the resultant

M -ary quantization output symbols to the FC, which yields

the global inference regarding the POI.

In WSNs, an important issue is the robustness of inference

against hostile actions. A lot of research has been devoted to

resolving this issue [4], [5], [6]. While most of early works

on data security with applications over WSNs focused on

preventing or mitigating malicious threats, a recent trend has

revolved around how to protect the global inference made by

the FC when a fraction of sensors are compromised [7], [8],

[9], [10]. In the literature, certain research publications, for

analytical convenience, assume that only binary data are trans-

mitted by local sensors [11]. Others such as Marano el al. [12]

have dealt with non-binary transmissions from local sensors

but consider asymptotic blindness of the FC as the number

of sensors grows unbounded. In this work, we challenge the

problem in a perhaps more practical scenario, where a fixed

number of sensors transmit M -ary local decisions to the FC.

In principle, a competent Byzantine attacker may also

collect the environmental data associated with compromised

sensors and carry joint estimation on the POI. In the extreme

case, the compromised nodes could be under a strong Byzan-

tine attack, where with nearly complete knowledge regarding

the identity of the compromised sensors as well as the POI

estimated, data at local sensors can be accordingly altered by

attackers.

In 2014, an optimal Byzantine attack policy for distributed

inference sensor networks has been proposed in [13], where

the attacker does not have full knowledge about the true

state of the POI, or quantization thresholds of the sensors,

or their statistics. Instead, the hostile actions at the sensors

are restricted only to the modifications of the M -ary symbols

transmitted to the FC. This surely limits the capability of

a Byzantine adversary who can only conduct the so-called

“man-in-the-middle” attack. In this paper, we further extend

the work presented in [13] by assuming that the Byzantine

adversary is endowed with the knowledge of the statistics of

local quantization outputs. Under such circumstance, we found

that blinding the FC becomes attainable when an adequate

fraction of sensors are compromised even if the number of

sensors considered is now fixed. Notably, by blinding the FC,

we mean that the global inference at the FC is as poor as a

random guess. Details will be given in subsequent sections.

II. SYSTEM MODEL AND PROBLEM FORMATION

Consider a WSN, which is designed to estimate a particular

phenomenon θ under the premise that local sensors acquire

conditionally independent and identically distributed (i.i.d.)

observations given θ ∈ Θ, where Θ is the sample space

of the POI. Among N sensors in this network, we assume

that α fraction of them are compromised by an adversary. In

this paper, compromised sensors are referred to as Byzantine

sensors and the remaining as Honest sensors. These Byzantine

sensors transmit falsified data to the FC in order to deteriorate

the performance of the global inference of the WSN.

Denote by ri the local observation of the ith sensor. The

local decision rule then converts ri to one of the M symbols,

denoted as ui ∈ {1, · · · ,M}. Since the transmitted symbol

may be different from the local quantization output ui, we

denote by vi the symbol that is transmitted by the ith sensor.

Accordingly, if node i is Honest, then vi = ui; otherwise, the

ith sensor modifies ui = ℓ to vi = m with probability pℓ,m(θ).
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As a result, the Byzantine transition probability from ui to vi
can be modeled using a row-stochastic matrix:

P(θ) ,








p1,1(θ) p1,2(θ) . . . p1,M (θ)
p2,1(θ) p2,2(θ) . . . p2,M (θ)

...
...

. . .
...

pM,1(θ) pM,(θ) . . . pM,M (θ)







.

We assume that the adversary has the knowledge of the local

decision rules employed by compromised sensors, or specifi-

cally the statistics of ui; hence, he can adjust P(θ) according

to the probability mass function (pmf) of ui, which is denoted

as cm(θ) , Pr(ui = m|θ). Without loss of generality, we

suppose cm(θ) > 0 for 1 ≤ m ≤ M since the attacker can

exclude those rows and columns in P corresponding to zero-

valued cm(θ) and design a P(θ) of smaller size to blind the FC.

For notational convenience, we will ignore the parameter θ and

simply write pℓ,m(θ) and cm(θ) as pℓ,m and cm, respectively,

in later derivations.

Additionally, we denote the transition probability of the

discrete noisy link between a sensor and the FC by:

Q ,








q1,1 q1,2 · · · q1,M
q2,1 q2,2 · · · q2,M
...

...
. . .

...
qM,1 qM,2 · · · qM,M







,

where qℓ,m is the probability of vi = ℓ being converted to

symbol zi = m during the noisy transmission. It is reasonable

to assume that the noisy link is independent of the POI and

hence Q remains invariant when the value of θ varies. From

elementary probability theory, P, Q and c , [c1 c2 · · · cM ]T

must satisfy






P1 = 1 with 0 ≤ pℓ,m ≤ 1 for 1 ≤ ℓ,m ≤ M ;

Q1 = 1 with 0 ≤ qℓ,m ≤ 1 for 1 ≤ ℓ,m ≤ M ;

1
T
c = 1 with 0 < cm < 1 for 1 ≤ m ≤ M,

where superscript “T” is the matrix transpose operation and 1

is the all-one column vector.

With the above setting, together with the assumption that

α fraction of sensors are compromised, the conditional prob-

ability of zi = m given phenomenon θ can be obtained as

follows:

Pr(zi = m |θ) =

M∑

j=1

qj,m Pr(vi = j |θ)

=

M∑

j=1

qj,m

(

α Pr(vi = j |i = Byzantine, θ)

+(1− α) Pr(vi = j |i = Honest, θ)

)

= α
M∑

j=1

qj,m

M∑

ℓ=1

Pr(vi = j |ui = ℓ, θ) · Pr(ui = ℓ |θ)

+(1− α)

M∑

j=1

qj,m Pr(ui = j |θ)

= α

(
M∑

j=1

qj,m

M∑

ℓ=1

pℓ,jcℓ −

M∑

j=1

qj,mcj

)

+

M∑

j=1

qj,mcj . (1)

A Byzantine attack is targeted to make zi and θ statistically

independent (and hence blind the FC) with the least amount

of effort (i.e., with minimum α). This can be characterized as:

Pr(zi = m |θ) = bm, ∀ 1 ≤ m ≤ M, (2)

for some pmf b = [b1 b2 · · · bM ]T, independent of θ. With

this objective in mind, together with (1), the problem that this

paper focuses on is to find the minimum α = αblind subject to

M∑

j=1

qj,mcj − bm = α

(
M∑

j=1

qj,mcj −
M∑

j=1

qj,m

M∑

ℓ=1

pℓ,jcℓ

)

for all 1 ≤ m ≤ M . In matrix form, the above constraint can

be expressed as:

QT
c− b = αQT

(
I− PT

)
c, (3)

where I is the identity matrix of proper size.

III. MAIN THEOREM

Instead of determining directly the minimum α that satisfies

(3) over all possible choices of b in the sense of (2), one can

divide the task into two subtasks. First, find the minimum

α = αblind(b) for a specific b and then minimize αblind(b)
over all possible choices of b. Notably, any choice of b will

yield the same “random guess” error performance 1 − 1/|Θ|
as long as the resultant αblind(b) is attainable.

We now conduct the first subtask for a choice of uniform

b that is perhaps common in the literature, i.e., bm = 1/M ,

∀ 1 ≤ m ≤ M . Since in usual situations of practical interest,

Q admits an inverse, we can simplify (3) to

c− d = α
(
I− PT

)
c, (4)

where

d ,
1

M
(QT)−1

1, (5)

and hence transform the problem to determining the minimum

αblind(b) that satisfies (4) subject to all legitimate P.

Before we state the main theorem, some preliminary

derivations are necessary. We first note that Q1 = 1 im-

plies 1
T
(
QT
)−1

= 1
T, based on which we derive 1

T
d =

1
M
1

T
(
QT
)−1

1 = 1
M
1

T
1 = 1. Thus

∑M

m=1(cm − dm) =
1 − 1 = 0. As a result, max1≤m≤M{cm − dm} ≥ 0. For

the trivial case of max1≤m≤M{cm − dm} = 0 (equivalently,

c = d), (4) immediately implies αblind(b) = 0. It remains to

examine the case of max1≤m≤M{cm − dm} > 0.

Divide the index set {1, 2, . . . ,M} into two groups. The

first group contains those satisfying max{cm − dm, 0} = 0,

while the remaining belong to the second group. Let m⋄ be

the number of elements in the first group. The condition of

max1≤m≤M{cm − dm} > 0 then implies that 1 ≤ m⋄ <
M , which guarantees that none of the two groups are empty.

Without loss of generality, we index the numbers in the first

group as 1, 2, . . . ,m⋄, and for those in the second group, we
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assume that em⋄+1 ≤ em⋄+2 ≤ · · · ≤ eM , where em ,

1−dm/cm for m⋄ < m ≤ M . Note that max{cm−dm, 0} > 0
implies em > 0 for those m’s in the second group. We then

have the following theorem.

Theorem 1: If the adversary knows the conditional pmf of

local quantization output c for a given phenomenon θ and the

transition probability of the noisy link Q admits an inverse,

then for uniform b that induces d in (5),

αblind(b),min
{
α ∈ [0, 1) : c− d = α

(
I− PT

)
c for some P

}

=eM , (6)

provided that eM ≤ 1. Furthermore, (6) can be achieved by

P∗ with its matrix entries defined as

p∗ℓ,j =







1, 1 ≤ ℓ = j ≤ m⋄;

1− eℓ
eM

, m⋄ < ℓ = j < M ;

(dj−cj)
∑

m⋄

m=1
(dm−cm)

eℓ
eM

, 1 ≤ j ≤ m⋄ < ℓ ≤ M ;

0, otherwise.

(7)

Proof: The theorem can be proved in two steps. The first

step shows that every α satisfying c − d = α
(
I − PT

)
c for

some P must be no less than eM . The second step gives

a feasible choice of P that verifies the achievability of the

claimed αblind(b) = eM .

A. αblind(b) ≥ eM

From (4), we know that

cM − dM = α

(

cM −
M∑

m=1

pm,Mcm

)

= α

[

(1− pM,M )cM −

M−1∑

m=1

pm,Mcm

]

.

This implies that

α ≥ α(1− pM,M ) = 1−
dM
cM

+ α

M−1∑

m=1

pm,M

cm
cM

︸ ︷︷ ︸

≥0

≥ 1−
dM
cM

= eM . (8)

B. αblind(b) = eM

By letting I and O be respectively the identity matrix and the

all-zero matrix of proper sizes designated by their subscripts,

the proposed P∗ can be written as:

P∗ =

[
Im⋄×m⋄ Om⋄×(M−m⋄)

K(M−m⋄)×m⋄ L(M−m⋄)×(M−m⋄)

]

,

where

K ,











(d1−c1)∑
m⋄

m=1
(dm−cm)

em⋄+1

eM

(d2−c2)∑
m⋄

m=1
(dm−cm)

em⋄+1

eM

(d1−c1)∑
m⋄

m=1
(dm−cm)

em⋄+2

eM

(d2−c2)∑
m⋄

m=1
(dm−cm)

em⋄+2

eM

...
...

(d1−c1)∑
m⋄

m=1
(dm−cm)

eM
eM

(d2−c2)∑
m⋄

m=1
(dm−cm)

eM
eM

· · · (dm⋄−cm⋄ )
∑

m⋄

m=1
(dm−cm)

em⋄+1

eM

· · · (dm⋄−cm⋄ )
∑

m⋄

m=1
(dm−cm)

em⋄+2

eM

...
...

· · · (dm⋄−cm⋄ )
∑

m⋄

m=1
(dm−cm)

eM
eM











,

and

L ,








1−
em⋄+1

eM
0 · · · 0

0 1−
em⋄+2

eM
· · · 0

...
...

. . .
...

0 0 · · · 1− eM
eM







.

We then validate:

eM
(
P∗
)

T

c = eM



















c1 +
∑M

m=m⋄+1
cmem

∑
m⋄

m=1
(dm−cm)

(d1−c1)
eM

...

cm⋄ +
∑M

m=m⋄+1
cmem

∑
m⋄

m=1
(dm−cm)

(dm⋄−cm⋄ )
eM

cm⋄+1 −
cm⋄+1em⋄+1

eM
...

cM−1 −
cM−1eM−1

eM

cM − cMeM
eM



















=















c1eM + (d1 − c1)
...

cm⋄eM + (dm⋄ − cm⋄)
cm⋄+1eM − (cm⋄+1 − dm⋄+1)

...
cM−1eM − (cM−1 − dM−1)

cMeM − (cM − dM )















(9)

= eMc+ d− c,

where (9) follows from

0 =

M∑

m=1

(dm − cm) =

m⋄

∑

m=1

(dm − cm) +

M∑

m=m⋄+1

(dm − cm)

=

m⋄

∑

m=1

(dm − cm)−

M∑

m=m⋄+1

cmem.

The proof is accordingly completed.

Several remarks are made based on the above theorem. First,

for noiseless wireless links, we have Q = I; in this case,

d , 1
M

(
QT
)−1

1 = 1
M
1 and hence

eM = 1−
dM
cM

= 1−
1

McM
= 1−

1

M max1≤m≤M cm

is no larger than unity. As a result, with additional knowl-

edge of the POI θ and its associated c(θ), the Byzantine

adversary can equate the conditional pmf of zi given θ to the

targeted uniform distribution, and the sensor network system

is blinded since for any θ1 6= θ2 in Θ, Pr(zi = m |θ1) =
Pr(zi = m |θ2) = 1

M
, ∀ 1 ≤ m ≤ M . In fact, it can be

verified that eM ≤ 1 as long as d consists of non-negative
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components. It however could happen that d = 1
M
(QT)−1

1

has negative components for certain Q, which may result in

eM > 1. As a consequence, (8) indicates that there exists no

α ∈ [0, 1) that fulfills (4). It is therefore impossible to blind

the sensor network system in the sense of (2) for every θ ∈ Θ.

In such case, an alternative b other than the uniform one may

need to be employed.

Secondly, d in constraint (4) can be regarded as the target

distribution that the Byzantine attacker intends to maliciously

change c to. In an extreme situation, we have αblind(b) = 0
when d = c, and hence no Byzantine effort is necessary.

Thirdly, the optimal P∗ is not unique! It can be shown that

any P∗ satisfying






p∗ℓ,m = 0, for 1 ≤ ℓ ≤ m⋄ and

1 ≤ m ≤ M and ℓ 6= m;

also for m⋄ < ℓ < M and

m⋄ < m ≤ M and ℓ 6= m;
M−1∑

ℓ=m⋄+1

p∗ℓ,mcℓ ≤
dm − cm

eM
, for 1 ≤ m ≤ m⋄;

m⋄

∑

j=1

p∗m,j =
em
eM

, for m⋄ < m < M

with the remaining terms obtained from P∗
1 = 1 (which leads

to p∗m,m = 1 for 1 ≤ m ≤ m⋄ and p∗m,m = 1 − em/eM for

m⋄ < m < M ) and c − d = α
(
I − PT

)
c (which leads to

p∗M,m = 0 for m⋄ < m ≤ M ) is a valid solution when b

is a uniform pmf. This gives more freedom to the Byzantine

attacker, in particular when a certain group of θ’s can be made

to correspond to a common system neutralizer P(θ).

Last, after refining (5) as d ,
(
QT
)−1

b for a general

b (not necessarily uniform), Theorem 1 can still be applied

with eM = max1≤m≤M{1− dm/cm}. Thus, our theorem can

actually give a very general procedure about how to equate

the conditional pmfs of zi given θ for distinct θ. An example

will be given in the next section.

IV. NUMERICAL RESULTS

To examine the performance deterioration of global infer-

ence due to Byzantine adversaries, we retain the inference

detection model from [13]. Let the local observation of the

ith sensor be modeled by

ri = s(θ) + ai, i = 1, 2, . . . , N,

where with θ ∈ Θ = {0, 1}, s(θ) = µ · (−1)1+θ is an

antipodally modulated signal to be estimated, and ai is zero-

mean Gaussian distributed with variance σ2
sen. By using simple

threshold quantizers, the conditional pmf of ui given θ can be

obtained by the rule that ui = m if ηm−1 < ri ≤ ηm with

ηm ,







−∞, m = 0;

AM · (2m−M), 1 ≤ m < M ;

∞, m = M,

where AM is a finite number satisfying (M−2)·AM = A and

A is an overloading parameter [14]. Based on this information,

the Byzantine adversary devises the flipping probability matrix

P∗(θ) according to (7) respectively for θ ∈ {0, 1} and converts

ui to vi probabilistically. The M -ary signal vi is then sent

to the FC via a noisy link characterized by the transition

probability matrix Q.

Subject to amplitude shift keying, zi is assumed to be the

quantization output due to input

yi = (2vi −M − 1) + ni, vi = 1, 2, . . . ,M,

with thresholds

λm =







−∞, m = 0;

2m−M, 1 ≤ m < M ;

∞, m = M,

where ni is zero-mean Gaussian distributed with variance σ2.

In other words, zi = m if λm−1 < yi ≤ λm. For example,

under M = 4, we have

Q =







1− ǫ1 ǫ1 − ǫ3 ǫ3 − ǫ5 ǫ5
ǫ1 1− 2ǫ1 ǫ1 − ǫ3 ǫ3
ǫ3 ǫ1 − ǫ3 1− 2ǫ1 ǫ1
ǫ5 ǫ3 − ǫ5 ǫ1 − ǫ3 1− ǫ1






,

where ǫk , Φ(−k/σ) and Φ is the standard normal cumulative

distribution function. The Bayes detection error probability of

the sensor network is equal to

Pe ,
1

2
Pr
(

θ̂ = 1
∣
∣
∣θ = 0

)

+
1

2
Pr
(

θ̂ = 0
∣
∣
∣θ = 1

)

,

where we assume Pr(θ = 0) = Pr(θ = 1) = 1
2 , and θ̂ is

the global inference made by the FC based on the reception

z = (z1, z2, . . . , zN ). Note that since the FC is not aware of

the presence of the Byzantine adversary, it makes the global

inference, assuming that the conditional pmf of zi given θ were
∑M

j=1 qj,mcj . The Byzantine then tries to blind the system

with the uniform b.

We illustrate the detection error Pe under N = 10, µ = 1,

σ2
sen = 1, σ2 = 4 and A = 2 as a function of α in Fig. 1. For

convenience, we regard α as a real number rather than a mul-

tiple of 1/N . Four local quantization resolutions respectively

corresponding to M = 2, 4, 8 and 16 are examined. Since

αblind(b) = αblind(b|θ) is a function of θ, what we present in

this figure is α∗
blind(b) , maxθ∈Θ αblind(b|θ).

1 As expected,

we observe that α∗
blind(b) increases as M grows. Thus a higher

quantization resolution will increase the blinding effort of a

Byzantine attacker. For example, only 4 sensors need to be

compromised for perfect blinding when M = 2 as contrasted

with 8 compromised sensors at M = 8 and M = 16.

Notably, we get eM > 1 when σ2 = 9 and M ≥ 4;

hence, making zi conditionally uniform distributed given

θ becomes impossible. Instead, the adversary should target

Pr(zi = m |θ = 0) = Pr(zi = m |θ = 1) = bm for some

b = [b1 b2 · · · bM ]T other than the uniform distribution. With

b = [0.2642 0.2004 0.2106 0.3248]T, we plot the detection

error in Fig. 2. It can be observed that the resulting new

1In this special example, we actually have αblind(b|0) = αblind(b|1).
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Fig. 1: Detection error probability Pe as a function of α under

a fixed P∗(θ) from (7). The pentagrams mark the values of

α∗
blind(b) for different local quantization resolutions, where b

is a uniform pmf.

α∗
blind(b) ≈ 0.9915 is prohibitively high and the Byzantine

adversary actually needs to compromise all of the ten sensors

(as α∗
blind(b)N ≈ 9.915) to blind the sensor network system.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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N = 10, µ = 1, σ2
sen = 1, σ2 = 9 and A = 2

P
e

α

2-bit

Fig. 2: Detection error probability Pe as a function of α
under a fixed P∗ from (7). The hexagram marks the value of

α∗
blind(b) ≈ 0.9915 for local quantization resolution of M = 4,

where b = [0.2642 0.2004 0.2106 0.3248]T.

V. CONCLUSION

The optimal Byzantine attack policy for WSNs with M -

ary quantized data was derived under the assumption that

the adversary can acquire the statistics of local quantization

outputs. Our analysis indicated that perfect blinding of global

inference can be achieved when α∗
blind(b) fraction of sensors

are compromised. A numerical experiment showed that in

certain situations, we may have eM > 1 for the uniform

b, and perfect blinding of the sensor network system does

not seem possible. Further investigations, however, reveals

that by adopting an alternative b, perfect blinding can still

be achieved. A future work that would be important from a

Byzantine adversary viewpoint is to know how to minimize

the blinding effort by determining

min
b∈RM : each bi≥0 and

∑
M
i=1

bi=1
α∗

blind(b).
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