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1 Quantum Stabilizer Codes

In this poster, we introduce a new way of construct-
ing arbitrary quantum stabilizer codes that are anal-
ogous to classical linear codes using a column-wise
approach.

An [[n, k|| stabilizer code is a codebook that en-
codes k qubits into a codeword of n qubits. Analo-
gous to classical linear block codes, a quantum stabi-
lizer code can be described by a parity check matrix
H comprising of n — k generators and can be seen

from . such that [3, Appendix A]
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3. Define an error vector v £ ~; & 72 @ 73,
where v; € .7, 7o € 2, and 73 = 3(s) =
S FsiBi € T for s; € {0,1}

4. An error vector is generated by a quantum
memoryless channel with probability: Pr(vy)

as a subspace of size 2¥ in an n-dimensional Hilbert 2  Main Results

space. We illustrate an example for [[n, k]| = [[3, 1]]
and define the candidate matrices sets as
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and construct an arbitrary stabilizer parity-check
matrix as follows:
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where (al- ‘ bj) e 0Bl v1<i j<3.
Note that each row aj £ (z; ‘ x;) of (Z|X) must
satisfy
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where a;; ©® o £ z;X} @ x;z;. It then corresponds
to a valid quantum stabilizer code [2]
1. Define .7 & span(al,ag, .. .,an,k)
2. & Span(an—k+lu <oy Olp, Bn—k—l—ln@n) and
T £ span(Bi,...,B,—k) can be constructed

Degenerate Quantum Maximum Likelihood
(DQML) Decoder
The DQML decoder gpqmL is defined as below:

goauL(s) = argmaxq Y Pr(y1 & 2 @ 3)
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Theorem: An Expression for the Exact
Average Success Probability

Given an arbitrary (Z ‘ X) ={a,a9,...,00, 1}
Then the exact average success probability based
on DQML decoding can be expressed as
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