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1 Quantum Stabilizer Codes

In this poster, we introduce a new way of construct-
ing arbitrary quantum stabilizer codes that are anal-
ogous to classical linear codes using a column-wise
approach.

An [[n, k]] stabilizer code is a codebook that en-
codes k qubits into a codeword of n qubits. Analo-
gous to classical linear block codes, a quantum stabi-
lizer code can be described by a parity check matrix
H comprising of n−k generators and can be seen
as a subspace of size 2k in an n-dimensional Hilbert
space. We illustrate an example for [[n, k]] = [[3, 1]]
and define the candidate matrices sets as
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and construct an arbitrary stabilizer parity-check
matrix as follows:
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where
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ai bj

) ∈ Q(3,1), ∀ 1 ≤ i, j ≤ 3.

Note that each row αj �
(
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of (Z|X) must

satisfy

αi �αj = 0, ∀ i, j;

where αi � αj � zix
T
j ⊕ xiz

T
j . It then corresponds

to a valid quantum stabilizer code [2]

1. Define S � span
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)
2. L � span
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and
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from S such that [3, Appendix A]

βi � βj = 0, ∀ i, j;
αi � βj = 0, ∀ i �= j,

αi � βi = 1, ∀ i.

3. Define an error vector γ � γ1 ⊕ γ2 ⊕ γ3,
where γ1 ∈ S , γ2 ∈ L , and γ3 � γ3(s) =∑n−k

i=1 siβi ∈ T for si ∈ {0, 1}
4. An error vector is generated by a quantum

memoryless channel with probability: Pr(γ)

2 Main Results
Degenerate Quantum Maximum Likelihood
(DQML) Decoder

The DQML decoder gDQML is defined as below:

gDQML(s) = argmax
γ2∈L
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Theorem: An Expression for the Exact
Average Success Probability

Given an arbitrary
(
Z X

)
= {α1,α2, . . . ,αn−k}.

Then the exact average success probability based
on DQML decoding can be expressed as
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