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1 General Binary Codes

In this poster, we introduce a new way of construct-
ing arbitrary binary codes (linear or nonlinear) using
a column-wise approach.
A code with M messages and with blocklength n

is described by a code parameter vector t. We
illustrate the function of this code parameter vector
with an example for the case of four messages M =
4. We define the candidate columns sets as
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and describe the a code as follows:

1. Let tj denote the number of the correspond-

ing candidate columns c
(4)
j appearing in the

codebook matrix of C (4,n), j = 1, . . . , 7.
2. Consider any binary code with blocklength n

by code parameters vector t:

n =

7
∑

j=1

tj where t = [t1, t2, . . . , t7]

A codebook C
(4,7)
t

of type t = [2, 0, 2, 0, 2, 1, 0] is
equivalent to all the columns permutations of the
following codebook:









0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 0 1 1 0 0 1
1 1 1 1 1 1 0









2 Main Results

Definition: r-wise Hamming Distance
Given any (M, n) binary codebook C (M,n), we

could always denote it by a specific code parame-
ters vector t. Choose some 1 ≤ i1 < i2 < · · · <

ir ≤ M, 2 ≤ r ≤ M, the r-wise Hamming distances

d
(M,n)
i1 i2 ··· ir

are the number of columns such that those
i1, i2, . . . , irth components are not equal. For the
case of M = 4, we have
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1234 = n

d
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34 = n− (t3 + t4 + t7)

Theorem: A closed-form expression for the
Exact Average Error Probability

Consider a BEC with arbitrary erasure probability

0 ≤ δ < 1 and an arbitrary code C
(M,n)
t

. The aver-
age ML error probability is a function of t as follows:
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