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Abstract—The exact value of the average error probability of
an arbitrary code (linear or nonlinear) using maximum likelihood
decoding is studied on binary erasure channels (BECs) with
arbitrary erasure probability 0 < δ < 1. The family of the fair
linear codes, which are equivalent to a concatenation of several
Hadamard linear codes, is proven to perform better (in the sense
of average error probability with respect to maximum-likelihood
decoding) than all other linear codes for many values of the
blocklength n and for a dimension k = 3. It is then noted that
the family of fair linear codes and the family of fair nonlinear
weak flip codes both maximize the minimum Hamming distance
under certain blocklengths. However, the fair nonlinear weak
flip codes actually outperform the fair linear codes, i.e., linearity
and global optimality cannot be simultaneously achieved for the
number of codewords being M = 2

3.

Index Terms—Binary erasure channel, generalized Plotkin
bound, optimal nonlinear channel coding, r-wise Hamming
distance, weak flip codes.

I. INTRODUCTION

In 1948 Claude E. Shannon published his brilliant landmark

paper in channel coding theory, entitled “A mathematical the-

ory of communication” [1]. In this ingenious work, Shannon

proved that for every communication channel, it is possible

to find an information transmission scheme that transmits

data with arbitrarily small error probability as long as the

rate is below the so-called channel capacity. Ever since the

publication of Shannon’s groundbreaking work, a main goal

in conventional coding theory has been to find good codes

with a rate close to channel capacity and with acceptable

performance with respect to error probability. A large part of

this effort has gone into the study of linear codes that allow

an easier analysis due to their implicit algebraic structure.

Although linear codes have been proven to provide good

transmission rates with acceptably low error probability over

some communications systems, they can still be improved

because they are not designed based on the goal of minimizing

the decoding error, but rather based on the goal of maximizing

some other partially related quantities like, e.g., the minimum

Hamming distance. Such improvements will be crucial for

future advanced coding systems with a demand for even higher

link quality.

At this background, we attempt to break away from tradi-

tional information theory principles of finding new theoretical

results on bounds of rates or on bounds of average error

probability, and instead we focus on an optimal (in the sense

of minimizing the exact average error probability with respect

to maximum-likelihood decoding) design of codes for a finite

blocklength [2], [3]. We are seeking the basic principles in

the concrete design of optimal codes with arbitrary but finite

blocklengths. Specifically, for a certain given channel, we fix

both the number of codewords M and the blocklength n, and

try to find the structure of a code that minimizes the exact

average error probability Pe among all codes, assuming that an

optimal decoder based on maximal-likelihood (ML) criterion

is adopted. As a basic principle and following our definitions

in [3, Sec. 2], a code C (M,n) is called optimal and denoted

by C (M,n)∗ if

Pe

(

C
(M,n)∗

)

≤ Pe

(

C
(M,n)

)

(1)

for any (linear or nonlinear) code C (M,n). On the other hand,

a linear code is claimed to be the best linear code if we restrict

ourselves to consider only the family of linear codes C
(M,n)
lin .

For designing such optimal code structures that achieve the

smallest average ML error probability, the analysis of the exact

error performance with ML decoding is vitally important. Un-

fortunately, the common tools in conventional coding theory

such as the minimum Hamming distance or the weight enumer-

ating function (WEF) do not provide enough information on

the analytical evaluation of the exact error probability even for

the cases of simple binary-input discrete memoryless channels

(DMCs). Note that so far no complete theoretical study in

this regard has been presented, except partially in [2], [3].

In [4], the authors study numerical techniques to reduce the

search complexity of best linear codes on the binary symmetric

channel, and recent results [5], [6] have shown that the linear

simplex codes and the possibly nonlinear equidistant codes

that maximize the minimum pairwise Hamming distance are

strictly suboptimal on the binary symmetric channel.

In this paper we focus on the binary erasure channel (BEC).

From our previous work [3], we know that for M = 21 or 22,

optimal codes can be found that are linear. In this paper we

treat the case of M = 23 = 8 and find that the optimal codes

cannot be linear! Note that for an exact performance analysis,

an extension of the pairwise Hamming distance, which we

name r-wise Hamming distance, is needed and developed, and
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it is found to be a key to the understanding of the codes’ exact

performance.

The remainder of this paper is structured as follows. After

some comments about our notation, we will introduce a gen-

eral column-wise description of binary codes in Section II. We

review the family of weak flip codes including its subfamily

of fair weak flip codes and re-define the classical linear

codes from the column-wise point-of-view in Section II-A.

Section II-B provides the definition of the r-wise Hamming

distance and its corresponding notation. The main results are

then summarized and discussed in Sections III: Section III-A

generalizes the Plotkin bound for the r-wise Hamming dis-

tance, and in Section III-B the (k = 3)-dimensional best linear

codes of size M = 23 on the BEC are presented.

As a convention in coding theory, vectors (denoted by bold

face Roman letters, e.g., x) are row-vectors. However, for sim-

plicity of notation and to avoid a large number of transpose-

signs ‘T’, we slightly misuse this notational convention for one

special case: any vector c is a column-vector. We use capital

letters for random quantities, e.g., X , and small letters for

their deterministic realizations, e.g., x; constants are depicted

by Greek letters, small Romans, or a special font, e.g., M; sets

are denoted by calligraphic letters, e.g., M; and |M| denotes

the cardinality of the set M.

II. COLUMN-WISE DESCRIPTION OF BINARY CODES

Following our approach in [3], a codebook matrix of a

general code C (M,n) with M codewords and with blocklength

n can be read either row-wise, where the M rows xm

correspond to the M codewords of length n, or column-wise

with n column vectors cj of length M:

C
(M,n) =







x1

...

xM






=






c1 c2 · · · cn






. (2)

We use a convenient numbering system for the possible

columns of the codebook matrix of binary codes as described

in the following definition.

Definition 1: For fixed M and bm ∈ {0, 1} with m ∈ M ,

{1, . . . ,M}, we describe the column vector (b1 b2 · · · bM)T

by its reverse binary representation of nonnegative integers

j =
∑

M

m=1 bm 2M−m, and write c
(M)
j , (b1 b2 · · · bM)T.

Note that due to symmetry of the BEC, flipping all zeros

to ones and vice-versa will result in a code of identical

performance. Thus, from the aspect of finding simply one

optimal code, we can neglect all candidate column vectors

starting with a one, i.e., we require b1 = 0. By excluding

the futile all-zero column, the set C(M) of all possible length-

M candidate columns of general binary codes can then be

restricted to

C(M) ,

{

c
(M)
1 , c

(M)
2 , . . . , c

(M)

2M−1−1

}

. (3)

Since the ordering of columns appearing in a codebook matrix

is irrelevant for the performance of the code because the BEC

is memoryless and stationary, we only need to record the count

of different candidate columns. Hence, for a given codebook

and for any j ∈ J , {1, . . . , 2M−1− 1}, we use tj to denote

the number of the corresponding candidate columns c
(M)
j

appearing in the codebook matrix of C (M,n), and describe

the code by the type vector

t , [t1, t2, . . . , t2M−1−1], (4)

where n =
∑2M−1−1

j=1 tj . We then say that the code is of type

t and write simply C
(M,n)
t

.

A. Weak Flip Codes and Linear Codes

We recall some special families of binary codes from [2].

Definition 2: Given an integer M ≥ 2, a length-M candidate

column is called a weak flip column if its first component is 0

and its Hamming weight equals
⌊

M

2

⌋

or
⌈

M

2

⌉

. The collection

of all possible weak flip columns is called weak flip candidate

columns set and is denoted by C
(M)
weak .

By its definition, a weak flip column contains an almost

equal number of zeros and ones. In the remainder of this paper,

we use the following shorthands:

J , 2M−1 − 1, ℓ̄ ,

⌈

M

2

⌉

, ℓ ,

⌊

M

2

⌋

, L ,

(

2ℓ̄− 1

ℓ̄

)

. (5)

Note that
∣

∣C
(M)
weak

∣

∣ = L (see [3]).

Definition 3: A weak flip code C
(M,n)
weak is constructed only

by weak flip columns. Since in its type (see (4)) all positions

corresponding to nonweak flip columns are zero, we use a

reduced type vector for weak flip codes:

tweak ,
[

tj1 , tj2 , . . . , tjL
]

, (6)

where
∑

L

w=1 tjw = n with jw, w = 1, . . . ,L, representing the

numbers of the corresponding weak flip candidate columns.

We have also defined a special subclass of weak flip codes

that possess particular quasi-linear properties [3].

Definition 4: A weak flip code is called fair if it is con-

structed by an equal number of all possible weak flip candidate

columns in C
(M)
weak . Note that by definition the blocklength of a

fair weak flip code C
(M,n)
fair is always a multiple of L.

In conventional coding theory, linear codes form an impor-

tant class of error correcting codes that have been shown to

possess powerful algebraic properties. We recall here only the

common definition of linear codes. For more details we refer

to the vast existing literature (e.g., see [7], [8]).

Definition 5: Let M = 2k, where k ∈ N , {1, 2, 3, . . .}.

The binary code C
(M,n)
lin is linear if its codewords span a k-

dimensional subspace of the n-dimensional vector space over

the channel input alphabet.

One of the important properties of a linear code concerns

their column weights.

Proposition 6: If an (M, n) binary code is linear, then each

column of its codebook matrix has Hamming weight M

2 , i.e.,

the code is a weak flip code.

The above proposition concludes that linear codes are weak

flip codes. However, the converse of Proposition 6 does not
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necessarily hold, i.e., even if M = 2k for some k ∈ N, a

weak flip code C (M,n) is not necessarily linear. In summary,

we have the following relations among linear, weak flip, and

arbitrary (M, n) codes:

{

C
(M,n)
lin

}

⊂
{

C
(M,n)
weak

}

⊂
{

C
(M,n)

}

. (7)

Next, we will derive the set C
(M)
lin of all possible length-M

candidate columns for the codebook matrices of binary linear

codes with M = 2k codewords. Being a subspace, linear codes

are usually represented by a generator matrix Gk×n. We now

apply our column-wise point-of-view to the construction of

generator matrices.1 The generator matrix Gk×n consists of

n column vectors cj of length k similar to (2). Note that

since the generator matrix is a basis of the code subspace,

only a column of all zeros is useless, i.e., there are totally

K , 2k − 1 = M − 1 possible candidate columns for Gk×n:

c
(k)
j , (b1 b2 · · · bk)

T, where j =
∑k

i=1 bi 2
k−i. Here b1 is

not necessarily equal to zero. Let Uk be an auxiliary K-by-k

matrix consisting of all possible K candidate columns for the

generator matrix: UT

k =
(

c
(k)
1 · · · c

(k)
K

)

. This matrix Uk then

allows us to create the set of all possible candidate columns

of length M = 2k for the codebook matrix of a linear code.

Lemma 7: Given a dimension k, the candidate columns set

C
(M)
lin for linear codes is given by the columns of the matrix

(

0

Uk

)

U
T

k, (8)

where 0 denotes an all-zero row vector of length k.

Thus, the codebook matrix of any linear code can be

represented by

C
(M,n)
lin =

(

0

Uk

)

Gk×n, (9)

which consists of columns taken only from C
(M)
lin . Similarly to

(6), since in its type all positions corresponding to candidate

columns not in C
(M)
lin are zero, we can also use a reduced type

vector to describe a k-dimensional linear code:

tlin ,
[

tj1 , tj2 , . . . , tjK
]

, (10)

where
∑

K

ℓ=1 tjℓ = n with jℓ, ℓ = 1, . . . ,K, representing the

numbers of the corresponding candidate columns in C
(M)
lin .

Definition 8: A linear code is called fair if its codebook

matrix is constructed by an equal number of all possible

candidate columns in C
(M)
lin . Hence the blocklength of a fair

linear code C
(M,n)
lin, fair is always a multiple of K.

1The authors in [4] have also used this approach to examine exhaustively
all possible linear codes.

Example 9: Consider the fair linear code with dimension

k = 3 and blocklength n = K = 7:

C
(8,7)
lin, fair =

(

0

U3

)

U
T

3 =

























0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1

























(11)

with the corresponding code type vector tlin =
[t85, t51, t102, t15, t90, t60, t105] = [1, 1, 1, 1, 1, 1, 1]. Note

that the fair linear code with k = 3 and n = 7 is an (8, 7)
Hadamard linear code with all pairwise Hamming distances

equal to 4.

B. r-wise Hamming Distance and r-wise Hamming Match

We once again emphasize that the pairwise Hamming dis-

tance is not sufficient for the description of the exact perfor-

mance of a code. We therefore define the r-wise Hamming

distance and show that in combination with the code type

vector t it allows a precise formulation of the exact error

probability of codes over the BEC.

Definition 10: For a given general codebook C (M,n) and an

arbitrary integer 2 ≤ r ≤ M, we fix some integers 1 ≤ i1 <

i2 < · · · < ir ≤ M and define the r-wise Hamming match

ai1 i2 ··· ir

(

C (M,n)
)

to be the cardinality of the index set

ai1 i2 ··· ir

(

C
(M,n)

)

,
∣

∣

{

j ∈ {1, . . . , n} :

cj,i1 = cj,i2 = · · · = cj,ir
}∣

∣. (12)

The r-wise Hamming distance di1 i2 ··· ir

(

C (M,n)
)

is accord-

ingly defined as

di1 i2 ··· ir

(

C
(M,n)

)

, n− ai1 ir ··· ir

(

C
(M,n)

)

. (13)

Note that the r-wise Hamming distance can be written

elegantly with the help of the type vector describing the

corresponding code:

di1 i2 ··· ir

(

C
(M,n)
t

)

= n−
∑

j∈J s.t.
cj,i1=cj,i2=···=cj,ir

tj , (14)

Here tj denotes the jth component of the code type vector t

of length J, and cj,iℓ is the iℓth component of the jth candidate

column c
(M)
j as given in Definition 1. Usually we will omit

the specification of the code and abbreviate the r-wise notation

in (12) and (13) as a
(M,n)
i1 i2 ··· ir

and d
(M,n)
i1 i2 ··· ir

or, even shorter,

aI and dI for some given I = {i1, i2, . . . , ir}, respectively.

Definition 11: The minimum r-wise Hamming distance

dmin;r is the minimum of all possible r-wise Hamming dis-

tances dI for a given (M, n) code. Correspondingly, we

are also interested in the maximum r-wise Hamming match

amax;r, which is the maximum of all possible r-wise Hamming

matches aI and is given by amax;r = n− dmin;r.

Note that in traditional coding theory it is customary to spec-

ify a code with three parameters (M, n, dH,min), where the third
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parameter specifies the minimum pairwise Hamming distance

(which corresponds to the 2-wise Hamming distance according

to Definition 10). We follow this tradition but replace the

minimum pairwise Hamming distance by a vector containing

all minimum r-wise Hamming distances for r = 2, . . . , ℓ̄:

d ,
(

dmin;2, dmin;3, . . . , dmin;ℓ̄). (15)

The reason why we restrict r ≤ ℓ̄ lies in the fact that for

weak flip codes the minimum r-wise Hamming distance is

only relevant for 2 ≤ r ≤ ℓ̄; see the remark after Theorem 13.

Example 12: We continue with Example 9. One can show

that the fair linear code with k = 3 and n = 7 is a (8, 7,d)
Hadamard linear code with d = (dmin;2, dmin;3, dmin;4) =
(4, 6, 6). Similarly, the fair linear code with k = 3 and

n = 35 is a (8, 35,d) Hadamard linear code with d =
(dmin;2, dmin;3, dmin;4) = (20, 30, 30). They are obviously not

fair weak flip codes for M = 8. Later in Theorem 15 we will

show that the fair weak flip code with M = 8 codewords is

actually a
(

8, 35, (20, 30, 34)
)

code.

III. MAIN RESULTS

A. Generalized Plotkin Bound for r-wise Hamming Distance

The r-wise Hamming distance (together with the code

type vector t) plays an important role in the closed-form

expression of the average ML error probability for an arbitrary

code C
(M,n)
t

over a BEC. It is therefore interesting to find

some bounds on the r-wise Hamming distance. We start with

a generalization of the Plotkin bound for r-wise Hamming

distance.

Theorem 13 (Plotkin Bound for r-wise Hamming Distance):

The minimum r-wise Hamming distance with 2 ≤ r ≤ M of

an (M, n) binary code always satisfies

dmin;r ≤







n

(

1−
(ℓ̄−1

r−1)
(2ℓ̄−1

r−1 )

)

if 2 ≤ r ≤ ℓ̄,

n if ℓ̄ < r ≤ M.

(16)

The above theorem only provides absorbing bounds to the

r-wise Hamming distance for 2 ≤ r ≤ ℓ̄. For larger values of

the parameter r it only renders the trivial bound dmin;r ≤ n.

Moreover, for r > ℓ̄, the minimum r-wise Hamming distance

of a weak flip code is always equal to this trivial upper

bound n and is therefore irrelevant to the code’s exact error

performance. Thus we only consider the minimum r-wise

Hamming distances for 2 ≤ r ≤ ℓ̄ in the code type vector

in (15).

It is well-known that the largest minimum pairwise Ham-

ming distance (or equivalently, the largest minimum 2-wise

Hamming distance) can be achieved by Hadamard codes,

provided that the corresponding Hadamard matrix exists [8,

Ch. 2]. Moreover, we have shown in [3] that the fair weak flip

codes maximize the minimum pairwise Hamming distance,

and we have conjectured that it is globally optimal in the sense

of minimizing the average ML error probability on the BEC.

The question therefore arises whether the fair weak flip code

achieves the generalized Plotkin Bound (16). We can answer

this question by referring to s-designs [9] from combinatorial

design theory.

Definition 14 ([9, Ch. 9]): Let v, κ, λs, and s be positive

integers such that v > κ ≥ s. An s-(v, κ, λs) design or simply

s-design is a pair (X ,B), where X is a set of size v and B

is a collection of subsets of X (called blocks), such that the

following properties are satisfied:

1) each block B ∈ B contains exactly κ points, and

2) every set of s distinct points is contained in exactly λs

blocks.

We now claim that the fair weak flip code for an arbitrary

M and for certain blocklengths can be seen as an r-design

with 2 ≤ r ≤ ℓ̄, and that it achieves the Plotkin upper bound

(16) for r-wise Hamming distances (again, it is trivial that its

dmin;r for r > ℓ̄ are equal to n).

Theorem 15: Fix some M and a blocklength n with n mod

L = 0. Then a fair weak flip code C
(M,n)
fair achieves the largest

minimum r-wise Hamming distance for all 2 ≤ r ≤ ℓ̄ among

all (M, n) codes and satisfies

dmin;r

(

C
(M,n)
fair

)

= n

(

1−

(

ℓ̄−1
r−1

)

(

2ℓ̄−1
r−1

)

)

, 2 ≤ r ≤ ℓ̄. (17)

A final remark to Theorem 15 is that the fair linear code

always meets the Plotkin bound for the 2-wise Hamming

distance; however, it does not necessarily meet the Plotkin

bound for r-wise Hamming distances with r > 2 as a fair

weak flip code C
(M,n)
fair does. This serves as an indication that

a fair linear code may perform strictly worse than the optimal

fair weak flip code even if it is the best linear code. Evidence

of this will be given in the next section.

B. Best Linear Codes with M = 8 on BEC

In [3], a new approach has been proposed for the derivation

of the exact average ML error probability. It is based on

the Inclusion–Exclusion principle in probability theory [10].

Combined with the r-wise Hamming distance and the code

parameter properties, it allows for a closed-form expression

of the exact value of the average ML error probability of an

arbitrary code C
(M,n)
t

used on a BEC [3, Thm. 46].

Theorem 16 (Exact Average ML Error Probability of Arbi-

trary C (M,n) on BEC): Consider a BEC with the conditional

channel probability

PY |X(y|x) =

{

1− δ if y = x, x ∈ {0, 1},

δ if y = 2, x ∈ {0, 1},
(18)

where the erasure probability satisfies 0 < δ < 1. For a

given code C
(M,n)
t

, the average ML error probability can be

expressed using the code parameters t as follows:

Pe

(

C
(M,n)
t

)

=
1

M

M
∑

r=2

(−1)r
∑

I⊆{1,...,M}
|I|=r

δdI , (19)

where dI denotes the r-wise Hamming distance as given in

Definition 10.
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In order to find the best linear codes, we consider this

closed-form expression of the exact average ML error proba-

bility and turn the minimization problem into an optimization

problem on the discrete variables tlin subject to the condition

that
∑

K

j=1 tj = n. For the blocklength n being a multiple of

K = 7, we succeed to find the best linear codes of dimension

k = 3.

Theorem 17: For a BEC and for any blocklength n being a

multiple of K = 7, a best linear code with dimension k = 3
is the fair linear code.

Unfortunately, this best linear code is not necessarily a

globally optimal code among all possible codes (including

nonlinear codes).

Example 18: Consider the fair linear code and the nonlinear

fair weak flip code for M = 23 and n = 35. From Theorem 16

we obtain

Pe

(

C
(8,35)
lin, fair

)

=
1

8

(

(

8

2

)

δn−15 −

(

8

3

)

δn−5 + 14δn−5 +

((

8

4

)

− 14

)

δn

−

(

8

5

)

δn +

(

8

6

)

δn −

(

8

7

)

δn +

(

8

8

)

δn

)

, (20)

and from Theorems 15 and also 16, we get

Pe

(

C
(8,35)
fair

)

=
1

8

(

(

8

2

)

δn−15 −

(

8

3

)

δn−5 +

(

8

4

)

δn−1

−

(

8

5

)

δn +

(

8

6

)

δn −

(

8

7

)

δn +

(

8

8

)

δn

)

. (21)

Thus,

Pe

(

C
(8,35)
lin, fair

)

− Pe

(

C
(8,35)
fair

)

=
14

8

(

δn−5 + 4δn − 5δn−1
)

,

(22)

which is strictly positive because the arithmetic mean is strictly

larger than the geometric mean. Hence, the fair linear code

with dimension k = 3 and blocklength n = 35 is not globally

optimal among all possible codes even if it beats any other

linear code in performance.

Actually, this example can be generalized to any blocklength

being a multiple of 7 except n = 7. The derivation is based on

elaborately extracting n columns from the codebook matrix

of a fair weak flip code with blocklength larger than n to

form a new (8, n) nonlinear code that is a concatenation of

nonlinear Hadamard codes. The technique however fails for

n = 7 because taking any seven columns from the code matrix

of the (8, 35) fair weak flip code always results in a Hadamard

linear code. We omit the details and only summarize the main

statement.

Proposition 19: For n mod 7 = 0 apart from n = 7, the

fair linear code with M = 8 codewords given in Theorem 17

is strictly suboptimal over the BEC.
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