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1 Fair Weak Flip Codes

In this poster, we re-introduce from our previous
work a new family of nonlinear codes: fair weak
flip codes. They belong to the class of equidis-
tant codes, i.e., they satisfy that any two distinct
codewords have identical Hamming distance.

In the case of M = 5, 6, we define the following
fair weak flip codes:
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0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1
1 0 1 1 0 1 1 0 0 1
1 1 0 1 1 0 1 0 1 0
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0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1
1 0 1 1 0 1 1 0 0 1
1 1 0 1 1 0 1 0 1 0
1 1 1 0 1 1 0 1 0 0

















Both of them have the following properties:

• Each column’s first component is 0 and its
Hamming weight equals to

⌊

M

2

⌋

or
⌈

M

2

⌉

.
• They are called fair since it is constructed by

an equal number of all possible such columns
(the number is called L).

• Each fair code can be constructed by duplicat-

ing C
(M,L)
fair

many times.
• The fair weak flip codes have a maximum

minimum Hamming distance and achieve the
Plotkin bound.

• These codes are not optimal in the sense
of average error probability over the binary
symmetric channel (BSC).
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2 Main Results

Proposition: Consider a BSC of conditional channel
probability

PY |X(y|x) =

{

1− ǫ if y = x,

ǫ if y 6= x,
x, y ∈ {0, 1}

with crossover probability 0 < ǫ < 1
2 . For a fair weak

flip code C
(M,n)
fair

with a corresponding blocklength,

let C
(M,n−1)
reduced

be a code that is created from C
(M,n)
fair

by deleting an arbitrary column in the codebook ma-
trix. Then

Pc

(

C
(M,n)
fair

)

= Pc

(

C
(M,n−1)
reduced

)

Moreover, let C
(M,n)
unfair

be a code that is created by

appending a weak flip column to C
(M,n−1)
reduced

such that
it is not a fair weak flip code. Then

Pc

(

C
(M,n)
unfair

)

> Pc

(

C
(M,n−1)
reduced

)

Theorem: Fair weak flip codes with an
arbitrary number of codewords M and with
a blocklength n such that n mod L = 0 are
strictly suboptimal on a BSC.
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