Optimal Finite Blocklength Code Design on the Binary Erasure Channel

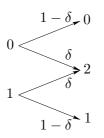
Po-Ning Chen, Hsuan-Yin Lin, Stefan M. Moser* Department of Electrical and Computer Engineering National Chiao Tung University (NCTU) Hsinchu 30010, Taiwan qponing@mail.nctu.edu.tw, {lin.hsuanyin,stefan.moser}@ieee.org

1 Introduction

In traditional coding theory, it is the goal to find good codes that operate close to the ultimate limit of the **channel capacity** as introduced by Shannon. In this work we would like to break away from these traditional simplifications and instead focus on an optimal (i.e., **minimum error probability**) design of codes for a certain given channel and a given fixed blocklength. Since for very short blocklength, it is not realistic to transmit large quantities of information, we start by looking at codes with only a few codewords, so called **ultra-small block-codes**. We introduce a new class of codes, called **fair weak flip codes** (the number of zeros and ones are almost equal under certain conditions on the blocklength n) and prove that they have beautiful **quasi-linear** properties.

2 Channel Models

We consider the binary erasure channel (BEC) with erasure probability δ :



3 Optimal Code Design

Define the following fair weak flip codes:

$\mathscr{C}^{(5,10)*}_{BEC} \triangleq$	(0)	0	0	0	0	0	0	0	0	0
	0	0	0	0	1	1	1	1	1	1
	0	1	1	1	0	0	0	1	1	1
	1	0	1	1	0	1	1	0	0	1
	$\backslash 1$	1	0	1	1	0	1	0	1	0/

*This work was supported by the National Science Council under NSC 100–2221–E–009–068–MY3.

Theorem 1. For a BEC and for any n being a multiple of 10, an **optimal codebook** with M = 5 or M = 6 codewords is

$$\left(\mathscr{C}_{\mathsf{BEC}}^{(\mathsf{M},10)*} \mathscr{C}_{\mathsf{BEC}}^{(\mathsf{M},10)*} \cdots \mathscr{C}_{\mathsf{BEC}}^{(\mathsf{M},10)*}\right)_{\mathsf{M}\times(n \bmod 10=0)}$$

4 Optimal Exact Error Probability

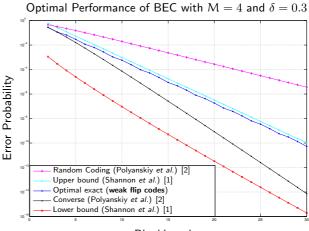


Figure 1: A comparison of some known bounds and the exact error probability of the globally optimal code with M = 4 codewords on a BEC.

References

- C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, "Lower bounds to error probability for coding on discrete memoryless channels," *Inform. Contr.*, pp. 522–552, May 1967, part II.
- [2] Y. Polyanskiy, H. V. Poor, and S. Verdú, "Channel coding rate in the finite blocklength regime," *IEEE Trans. Inf. Theory*, vol. 56, no. 5, pp. 2307–2359, May 2010.