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Abstract—Optimal block-codes (in the sense of minimum av-
erage error probability, using maximum likelihood decoding)
with a small number of codewords are investigated for the binary
asymmetric channel (BAC), including the two special cases of the
binary symmetric channel (BSC) and the Z-channel (ZC), both
with arbitrary cross-over probabilities. For the ZC, the optimal
code structure for an arbitrary finite blocklength is derived in the
cases of two, three, and four codewords and conjectured in the
case of five codewords. For the BSC, the optimal code structure for
an arbitrary finite blocklength is derived in the cases of two and
three codewords and conjectured in the case of four codewords.
For a general BAC, the best codebooks under the assumption of
a threshold decoder are derived for the case of two codewords.
The derivation of these optimal codes relies on a new approach
of constructing and analyzing the codebook matrix not rowwise
(codewords), but columnwise. This new tool leads to an elegant
definition of interesting code families that is recursive in the block-
length and admits their exact analysis of error performance.
This allows for a comparison of the average error probability
between all possible codebooks.

Index Terms—Binary asymmetric channel (BAC), binary sym-
metric channel (BSC), finite blocklength, flip codes, maximum like-
lihood (ML) decoder, minimum average error probability, optimal
codes, weak flip codes, Z-channel (ZC).

I. INTRODUCTION

S HANNON proved in his ground-breaking work [1] that it
is possible to find an information transmission scheme that

can transmit messages at arbitrarily small error probability as
long as the transmission rate in bits per channel use is below the
so-called capacity of the channel. However, he did not provide
a way on how to find such schemes, but used a proof technique
based on random coding that ensures the codes’ existence. In
particular, he did not tell us much about the design of codes
apart from the fact that good codes may need to have a large
blocklength.
For many practical applications, exactly this latter constraint

is rather unfortunate as we often cannot tolerate too much delay
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(e.g., in interhuman communication, in time-critical control, and
communication, etc.). Moreover, the system complexity usually
grows exponentially in the blocklength. In consequence, having
large blocklength might not be an option, but we have to restrict
the codewords to some reasonable size. The question now arises
what can theoretically be said about the performance of commu-
nication systems with such restricted block size.
The last years have seen a renewed interest in the theoret-

ical understanding of finite-length coding [2]–[5]. There are sev-
eral possible ways of approaching the problem of finite-length
codes. In [2], the authors fix an acceptable error probability and
a finite blocklength and then find bounds on themaximal achiev-
able transmission rate. This parallels the method of Shannon
who set the acceptable error probability to zero, but allowed
infinite blocklength, and then found the maximum achievable
transmission rate (the capacity). A typical example in [2] shows
that for a blocklength of 1800 channel uses and for an error
probability of , one can achieve a rate of approximately
80 percent of the capacity of a binary symmetric channel of ca-
pacity 0.5 bits. For more details about the work in [2], we refer
to Section VI-C.
In a different approach, one fixes the transmission rate and

studies how the error probability depends on the blocklength
(i.e., one basically studies error exponents, but for relatively

small [6]). For example, [5] introduces new random coding
bounds that enable a simple numerical evaluation of the error
probability for finite blocklengths.
All these results have in common that they are related to

Shannon’s ideas in the sense that they try to make fundamental
statements about what is possible and what not. The exact
manner how these systems have to be built is ignored on
purpose.
Our approach in this paper is different. Based on the insight

that for very short blocklength, one has no big hope of trans-
mitting much information with acceptable error probability, we
concentrate on codes with a small fixed number of codewords:
so-called ultrasmall block-codes. By this reduction of the trans-
mission rates, our results are directly applicable even for very
short blocklengths. In contrast to [2] that provides bounds on
the best possible theoretical performance, we try to find a best
possible design that minimizes the average error probability.
Hence, we put a big emphasis on finding insights in how to ac-
tually build an optimal system. In this respect, this paper could
rather be compared to [7]. There the authors try to describe the
empirical distribution of good codes (i.e., of codes that approach
capacity with vanishing error probability) and show that for a
large enough blocklength, the empirical distribution of certain
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good codes converges in the sense of divergence to a set of input
distributions that maximize the input–output mutual informa-
tion. Note, however, that [7] again focuses on the asymptotic
regime, while our focus lies on finite blocklength, and not ca-
pacity-achieving codes.
There are interesting applications for ultrasmall block-codes.

For example, in the situation of establishing an initial connec-
tion in a wireless link, the amount of information that needs to be
transmitted during the setup of the link is very limited, usually
only a couple of bits, but these bits need to be transmitted in very
short time (e.g., blocklength in the range of to )
with the highest possible reliability [8]. Another important ap-
plication for ultrasmall block-codes is in the area of quality of
service (QoS). In many delay-sensitive wireless systems like,
e.g., voice over IP (VoIP) and wireless interactive and streaming
video applications, it is essential to comply with certain limita-
tions on queuing delays or buffer violation probabilities [3], [4].
A further area where the performance of short codes is relevant
is proposed in [9]: effective rateless short codes can be used to
transmit some limited feedback about the channel state informa-
tion in a wireless link or in some other latency-constrained ap-
plication. Hence, it is of significant interest to conduct an anal-
ysis of (and to provide predictions for) the performance levels
of practical finite-blocklength systems. Note that while the mo-
tivation of this work focuses on rather smaller values of , our
results nevertheless hold for arbitrary finite .
The study of ultrasmall block-codes is interesting not only be-

cause of the above-mentioned direct applications, but because
their analytic description is a first step to a better fundamental
understanding of optimal nonlinear coding schemes (with ML
decoding) and of their performance based on the exact error
probability rather than on an upper bound on the achievable
error probability derived from the union bound or the mutual
information density bound and its statistics [10], [11].
To simplify our analysis, we have restricted ourselves for the

moment to binary discrete memoryless channels, that we call in
their general form binary asymmetric channels (BAC). The two
most important special cases of the BAC, the binary symmetric
channel (BSC) and the Z-channel (ZC), are then investigated
more in detail.
Our main contributions are as follows:
1) We provide first fundamental insights into the performance
analysis of optimal nonlinear code design for the BAC.
Note that there exists a vast literature about linear codes,
their properties, and good linear design (e.g., [12]). Some
Hamming-distance related topics of nonlinear codes are
addressed in [13].1

2) We provide new insights in the optimal code construction
for the BAC for an arbitrary finite blocklength and for

codewords.
3) We provide optimal code constructions for the ZC for an
arbitrary finite blocklength and for , 3 and 4 code-
words. For the BSC, we provide optimal code construc-
tions for an arbitrary finite blocklength and for

1Note that some of the code designs proposed in this paper actually have
interesting “linear-like” properties and can be considered as generalizations of
linear codes with codewords to codes with a general number of codewords
. For more details see [14].

Fig. 1. Binary asymmetric channel (or BAC).

and 3 codewords and locally optimal code constructions
for codewords.

4) We propose a new approach to the design and analysis of
block-codes: instead of focusing on the codewords (i.e.,
the rows in the codebook matrix), we look at the codebook
matrix in a columnwise manner.

The remainder of this paper is structured as follows: we end
this introduction with some comments about our notation and
will then introduce our channel models in Section II. After some
more preliminaries in Section III, Section IV contains a very
short example showing that the analysis of even such simple
channel models is nontrivial and often nonintuitive. Section V
then presents new code definitions that will be used for our main
results. In Section VI, we review some important previous work.
Sections VII–IX then contain our main results. In Section VII,
we analyze the BAC for two codewords, Section VIII takes a
closer look at the ZC, and in Section IX we investigate the BSC.
Many of the lengthy proofs have been moved to the appendix.
We conclude in Section X.
As is common in coding theory, vectors (denoted by bold face

Roman letters, e.g., ) are row-vectors. However, for simplicity
of notation and to avoid a large number of transpose-signs, we
slightly misuse this notational convention for one special case:
any vector is a column-vector. It should be always clear from
the context because these vectors are used to build codebook
matrices and are therefore also conceptually quite different from
the transmitted codeword or the received sequence . Other-
wise our used notation follows the main stream. We use capital
letters for random quantities, e.g., , and small letters for real-
izations, e.g., ; sets are denoted by a calligraphic font, e.g., ;
and constants are depicted by Greek letters, small Romans or a
special font, e.g., .

II. CHANNEL MODEL AND SYSTEM DESCRIPTION

We consider a discrete memoryless channel (DMC) with both
a binary input and a binary output alphabet. The most general
such binary DMC is the so-called binary asymmetric channel
(BAC) and is specified by two parameters: denotes the prob-
ability that a 0 is flipped into a 1, and denotes the probability
that a 1 is flipped into a 0, see Fig. 1.
For symmetry reasons and without loss of generality, we can

restrict the values of these parameters as follows:

(1)

(2)

(3)

Note that in the case when , we simply flip all zeros to
ones and vice versa to get an equivalent channel with .
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Fig. 2. Region of possible choices of the channel parameters and of a
BAC. The shaded area corresponds to the interesting area according to (1)–(3).

Fig. 3. Binary symmetric channel.

Fig. 4. Z-channel.

For the case when , we flip the output , i.e., change
all output zeros to ones and ones to zeros, to get an equivalent
channel with . Note that (2) can be simplified to

and is actually implied by (1) and (3). And for the case
when , we flip the input to get an equivalent
channel that satisfies .
We have depicted the region of possible choices of the param-

eters and in Fig. 2. The region of interest given by (1)–(3)
is denoted by .
Note that the boundaries of correspond to three special

cases: the binary symmetric channel (BSC) (see Fig. 3) has equal
cross-over probabilities . According to (2), we can
assume without loss of generality that .
The Z-channel (ZC) (see Fig. 4) will never distort an input 0,

i.e., . An input 1 is flipped to 0 with probability .
Finally, the case corresponds to a completely

noisy channel of zero capacity: given , the events
and are equally likely, i.e., and are statistically
independent.
The following three definitions are commonly used.
Definition 1: An coding scheme for a channel con-

sists of a codebook with codewords of length
( ), an encoder that maps every message into
its corresponding codeword , and a decoder that makes a de-
coding decision for every received -vector
.

A codebook is called linear if it can be seen as a subspace
of the -dimensional vector space over the channel input
alphabet.2

The performance of a coding scheme is described by its av-
erage probability of making a decoding error.
Definition 2: Given that message has been sent, let be

the probability of a decoding error of a code:

(4)

(5)

where is the indicator function whose value is 1 if the state-
ment is correct and 0 otherwise. The average error probability

of a code is defined as

(6)

Sometimes it will be more convenient to focus on the probability
of not making any error, denoted success probability :

(7)

and on the corresponding average success probability3

.
We will always assume that the possible messages are

equally likely and that the decoder is a maximum likelihood
(ML) decoder:

(8)

Note that for equally likely messages, an ML decoder is equiva-
lent to a maximum a posteriori (MAP) decoder and is therefore
optimal.
Definition 3: For a given coding scheme, we define

the decoding region as the set of -vectors that are
decoded to the message :

(9)

Moreover, we also make the following definitions.
Definition 4: By we denote the number of po-

sitions , where and . For , the joint
composition of two codewords and is de-
fined as

(10)

Note that and
denote the commonly used Hamming distance and Hamming
weight, respectively.

2Being a subspace, linear codes usually are represented by a generator matrix,
which is basically a basis of the subspace. As we are not interested in linear
codes in particular, but in both linear and nonlinear codes, we will not use this
in this paper.
3The subscript “ ” stands for “correct.”
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The following remark deals with the way how codebooks can
be described. It is not standard, but turns out to be very important
and is actually a clue to our derivations.
Remark 5: It is usual to write the codebook as an

matrix with its rows corresponding to the codewords

... (11)

However, it turns out to be much more convenient and powerful
to consider the codebook columnwise instead of rowwise. So,
instead of specifying the codewords of a codebook, we actually
specify its (length- ) column-vectors .
Remark 6: Since we assume equally likely messages, any

permutation of rows only changes the assignment of codewords
to messages and has no impact on the performance.We consider
two codes with permuted rows as being equal, i.e., a code is ac-
tually a set of codewords, where the ordering of the codewords
is irrelevant.
Furthermore, since we are only considering memoryless

channels, any permutation of the columns of will lead
to another codebook that is equivalent to the first in the sense
that it has the exact same error probability. We say that such
two codes are equivalent. We would like to emphasize that two
codebooks being equivalent is not the same as two codebooks
being equal. However, as we are mainly interested in the
performance of a codebook, we usually treat two equivalent
codes as being the same. In particular, when we speak of a
unique code design, we do not exclude the always possible
permutations of columns.
In spite of this, for the sake of clarity of our derivations, we

usually will define a certain fixed order of the codewords/code-
book column vectors.

III. PRELIMINARIES

A. Error Probability of the BAC

The conditional probability of the received vector given the
sent codeword of the BAC can be written as

(12)

where we use to denote the product distribution

(13)

Considering that

(14)

the average error probability of a coding scheme over a
BAC can now be written as

(15)

(16)

where is the ML decision (8) for the observation .

B. Error (and Success) Probability of the BSC

In the special case of a BSC, (16) simplifies to

(17)

The success probability is accordingly4

(18)

C. Error (and Success) Probability of the ZC

In the special case of a ZC, the average success probability
can be expressed as follows:

(19)

(20)

The error probability formula is accordingly

(21)

4Note that the second summation contains only one value and could be re-
placed by an indicator function.
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D. Pairwise Hamming Distance

The minimum Hamming distance is a well-known and often
used quality criterion of a codebook, see, e.g., [12], [13]. In
[13, Ch. 2], the maximum minimum Hamming distance for a
given code is discussed including important results like
the Plotkin bound and Levenshtein’s theorem. (For more de-
tails about upper and lower bounds to the average error proba-
bility, see also Section VI.) Unfortunately, a design based on the
minimum Hamming distance can fail even for linear codes and
even for a very symmetric channel like the BSC, whose error
probability performance is completely specified by the Ham-
ming distances between codewords and received vectors (see
also Section IX-C).
We therefore define a slightly more general and more con-

cise description of a codebook: the pairwise Hamming distance
vector.
Definition 7: Given a codebook with codewords ,

, we define the pairwise Hamming distance vector
of length as follows:

(22)

The minimum Hamming distance is then defined
as the minimum component of the pairwise Hamming distance
vector .

IV. AN EXAMPLE

To show that the search for an optimal (possibly nonlinear)
code is neither trivial nor intuitive even in the symmetric BSC
case, we would like to start with a simple example before we
summarize our main results.
Assume a BSC with cross-over probability , ,

and a blocklength . Then consider the following codes:5

(23)
We observe that while both codes are linear, the first code has
a minimum Hamming distance 1, and the second has a min-
imum Hamming distance 2. It is quite common to believe that

shows a better performance. This intuition is based on
Gallager’s famous performance bound [6, Ex. 5.19]:

(24)

However, the exact average error probability as given in
(17) actually can be evaluated as and

5Wewill see in Section V that both codes are weak flip codes. In this example,
and according to Definition 11 given later.

. Hence, even though the minimum Ham-
ming distance of the first codebook is smaller, its overall
performance is superior to the second codebook!
Our goal is to find the structure of an optimal code

that satisfies

(25)

for any code .

V. FLIP CODES AND WEAK FLIP CODES

We next introduce some special codebooks that will prove
instrumental in developing the optimal codes.
Definition 8: The flip code of type , , for

is a code with codewords defined by
the following codebook matrix:

(26)

Defining the column vectors

(27)

we see that a flip code of type is given by a codebook matrix
consisting of first columns and then columns .
We again remind the reader that due to the memorylessness

of the BAC, other codes with the same columns as , but
in different order are equivalent to . Moreover, we would
like to point out that while the flip code of type 0 corresponds
to a repetition code, the general flip code of type with is
neither a repetition code nor is it even linear.
The columns given in the set (27) are called candidate

columns. They are flipped versions of each other, therefore also
the name of the code.
The definition of a flip code with one codeword being the

flipped version of the other cannot be easily extended to a sit-
uation with more than two codewords. Hence, for , we
need a new approach. Motivated by (27) and noting that these
candidate columns have an equal number of zeros and ones, we
give the following definition.
Definition 9: For an , a length- candidate column
is called a weak flip column if its first component is 0 and its

Hamming weight equals to or .
Accordingly, a weak flip column contains an equal or at least

almost equal number of zeros and ones. Note, however, that only
in (27) is a weak flip column.

Based on these weak flip columns, we define the family of
weak flip codes.
Definition 10: A weak flip code is defined by a codebook

matrix that is constructed solely by weak flip columns.
Note that for , only the flip code of type 0 also is a

weak flip code, all other flip codes are not weak flip codes, i.e.,
the definition of weak flip codes is only useful for .
For or , we define the weak flip codes more

specifically as follows.
Definition 11: A weak flip code of type , , with

or codewords is defined by a codebook matrix
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consisting of first columns , then columns
, and finally columns , where

(28)

or

(29)

respectively. We often describe the weak flip code of type
by its code parameters

(30)

where can be computed from the blocklength and the type
as . Moreover, we use

(31)

to denote the decoding region of the th codeword of .
Note that, as already discussed in Remark 6, the order of these

columns does not matter with regard to the performance of the
code. However, in order to make sure that the code is well de-
fined, we require here the order of the candidate columns to be
exactly as given (i.e., all columns together, then all in
the middle, and all on the right of the codebook matrix).
Thereby, we also clearly and uniquely specify the codewords

.
An interesting subfamily of weak flip codes is defined as

follows.
Definition 12: A fair weak flip code of type ,

with or codewords satisfies that

(32)

Note that the fair weak flip code is only defined provided that the
blocklength satisfies . In order to be able to pro-
vide convenient comparisons for every blocklength , we de-
fine a generalized fair weak flip code for every , ,

where
(33)

If , the generalized fair weak flip code actually is
a fair weak flip code.
The following lemma follows straightforwardly from the re-

spective definitions. We therefore omit its proof.
Lemma 13: The pairwise Hamming distance vector of the

weak flip code for or is given as follows:

(34)

(35)

VI. PREVIOUS WORK

A. SGB Bounds on the Average Error Probability

In [15], Shannon, Gallager, and Berlekamp derive upper and
lower bounds on the average error probability of a given code
used on a DMC. We next quickly review their results.

Definition 14: For , we define

(36)

Then, the discrepancy between and is
defined as

(37)
with given in Definition 4.
Note that the discrepancy is a generalization of the Ham-

ming distance, however, it depends strongly on the conditional
channel law (i.e., in the case of a BAC, on the cross-over proba-
bilities). We use a superscript “(DMC)” to indicate the channel
which the discrepancy refers to.
Definition 15: The minimum discrepancy

for a codebook is the minimum value of over
all pairs of codewords. The maximum minimum discrepancy is
the maximum value of over all possible
codebooks: .
Theorem 16 (SGB Bounds on Average Error Probability

[15]): For an arbitrary DMC, the average error probability
of a given code with codewords and

blocklength is upper- and lower-bounded as follows:

(38)

where denotes the smallest nonzero transition probability
of the channel.
Note that these bounds are specific to a given code design

(via ). Therefore, the upper bound is a generally valid
upper bound on the optimal performance, while the lower bound
only holds in general if we apply it to the optimal code or to a
suboptimal code that achieves the optimal .
The bounds (38) are tight enough to derive the error exponent

of the DMC (for a fixed number of codewords).
Theorem 17 ([15]): The error exponent of a DMC for a fixed

number of codewords

(39)

is given as

(40)

Unfortunately, in general the evaluation of the error exponent
is very difficult. For some cases, however, it can be done. For
example, for , we have

(41)
Also for the class of so-called pairwise reversible channels, the
calculation of the error exponent turns out to be uncomplicated.
Definition 18: A pairwise reversible channel is a DMC that

has for any inputs .
Clearly, the BSC is a pairwise reversible channel.
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Note that it is easy to compute the pairwise discrepancy of a
linear code on a pairwise reversible channel, so linear codes are
quite suitable for computing (38).
Theorem 19 ([15]): For pairwise reversible channels with

,

(42)

where denotes the number of times the channel input letter
occurs in a column. Moreover, is achieved by fair weak

flip codes.6

We would like to emphasize that while Shannon et al. proved
that fair weak flip codes achieve the error exponent, they did
not investigate the error performance of fair weak flip codes for
finite . As we will show later, fair weak flip codes might be
strictly suboptimal for finite (see also [16]).

B. Gallager Bound

Another famous bound is by Gallager [6].
Theorem 20 ([6]): For an arbitrary DMC, there exists a code

with such that

(43)

where is the Gallager exponent and is given by

(44)

with

(45)

C. PPV Bounds for the BSC

In [2], Polyanskiy, Poor, and Verdú present upper and lower
bounds on the optimal average error probability for finite
blocklength for the BSC. The upper bound is based on random
coding. It is the exact random coding error expression for the
BSC by using an alternative way compared to [17].
Theorem 21 (PPVUpper Bound [17, Theorem 2],[2, Theorem

32]): If the codebook is created at random based on a
uniform distribution, the expected average error probability (av-
eraged over all codewords and all codebooks) satisfies

(46)

6While throughout we only consider binary inputs and or ,
the definitions of our fair weak flip codes can be extended to nonbinary inputs
and larger . Also, these extended fair weak flip codes will achieve the corre-
sponding error exponents. Note that Shannon et al. did not actually name their
exponent-achieving codes.

Note that there must exist a codebook whose average error
probability achieves (46), so Theorem 21 provides a general
achievable upper bound on the error probability, although we
do not know the concrete code structure.
Polyanskiy et al. also provide a new general converse for the

average error probability: the so-called metaconverse, which
is based on binary hypothesis testing. For a BSC, the meta-
converse lower bound happens to be equivalent to Gallager’s
sphere-packing bound.
Theorem 22 (PPV Lower Bound [6, p. 163, Eq. (5.8.19)],[2,

Theorem 35]): Any codebook satisfies

(47)

where for and for

(48)

and where the positive integer and coefficients are
chosen such that

(49)

(50)

VII. ANALYSIS OF THE BAC

We start with results that hold for the general BAC. In this
section, we will restrict ourselves to two codewords .
Note that in this analysis we do not focus on performance
bounds, but we put a special emphasis on the optimal code
design.

A. Optimal Codes

Theorem 23: Consider a BAC and a blocklength . Then,
irrespective of the channel parameters and , there exists a
choice of , , such that the flip code of type ,

is optimal in the sense that it minimizes the average error
probability.

Proof: Consider an arbitrary code with codewords
and a blocklength , and assume that this code is not a flip
code, but it has a number of positions where both codewords
have the same symbol. An optimal decoder will ignore these
positions completely. Hence, the performance of this code will
be identical to a flip code of length . Now, change this code in
the positions with identical symbol such that the code becomes
a flip code of length . If we use a suboptimal decoder that
ignores these positions we still keep the same performance.
However, an ML decoder can potentially improve the perfor-
mance, i.e., we have

(51)

(52)
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An alternative proof is shown in Appendix A-B. While this
proof is more elaborate, it turns out to be useful for the deriva-
tion of Theorem 25.
This result is intuitively very pleasing because it seems to

be a rather bad choice to have both codewords having the same
symbol in a particular position, e.g., in the same
position . However, note that the theorem does not exclude the
possibility that another code might exist that also is optimal and
that does have an identical symbol in both codewords at a given
position.
We would like to point out that the exact choice of is not

obvious and depends strongly on , , and . As an example,
the optimal choices of are shown in Fig. 5 for as a
function of and . We see that depending on the channel
parameters, the optimal value of changes. Note that for a com-
pletely noisy channel ( ), the choice of is irrelevant
since the probability of error is for any code. Moreover, in
Theorem 29 it will be shown that the flip code of type 0 is op-
timal on the ZC; and in Theorem 36 it will be shown that the
flip codes are optimal on the BSC for any choice of . We defer
the exact treatment of the ZC and the BSC to Sections VIII and
IX, respectively.

B. Optimal Decision Rule for Flip Codes

Having only two codewords, the ML decision rule can be
expressed using the log-likelihood ratio (LLR). For the flip code
of type , , the LLR is given as

(53)

(54)

(55)

(56)

where we have defined

(57)

to be the Hamming distance of the received sequence to the first
codeword.
Hence, we now express the ML decision rule for the flip code

of type as

(58)

Recall that and are parameters describing the channel
(BAC), and describe the codebook (flip code ), and

describes the received vector (with respect to the
first codeword). As an example, Fig. 6 depicts the log-likelihood

Fig. 5. Optimal codebooks on a BAC: the optimal choice of the parameter
for different values of and for a fixed blocklength .

Fig. 6. Log-likelihood ratio for (i.e.,
) as a function of for different values of . The solid blue lines corre-

spond to , the dashed red lines to . Observe that for and
(i.e., the region between the two vertical purple lines), the

threshold for the optimal ML decision rule is , see Theorem 24.

ratio as a function of (with )
for the flip code in the cases of and . We see
that for some integer , is always larger than
0 for and smaller than 0 for .
This seems to point toward a simplification of (58): instead

of computing the log-likelihood ratio, we only need to consider
. This indeed is the case. From Properties (2) and (3) of Propo-
sition 40 in Appendix A-A, it follows directly that the ML de-
cision rule for a flip code is a threshold rule.
Theorem 24 (Threshold Rule): For every flip code and

every BAC , there exists a threshold ,
, such that the ML decision rule can be stated as

if
if .

(59)

The threshold depends on . The region of channel pa-
rameters with identical threshold (for given and ) is then
defined as follows:

(60)

Authorized licensed use limited to: Hsuan Yin Lin. Downloaded on May 01,2020 at 07:53:17 UTC from IEEE Xplore.  Restrictions apply. 



7354 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013

Fig. 7. Error probabilities of all possible flip codes as a function of the
channel parameter , for a fixed blocklength , , and a fixed
decision rule . For any , the best code is the one with the smallest error
probability value.

C. Best Codes for a Fixed Decision Rule

Our original goal was to find the optimal code for a given
channel .We have shown that this is equivalent to finding
an optimal . Unfortunately, this search is difficult because the
borders between the regions of different optimal (see, e.g.,
Fig. 5) are defined by the combined influences of two different
forces: when varying , either the optimal code
changes, but the optimal threshold remains the same, or the
optimal choice of changes, too. Hence, a joint optimization of
and is necessary.
We now simplify the problem by fixing the decision rule (i.e.,

the threshold ) and then search for the best code for the
given threshold and the given channel . This turns out
to be easier, but unless we happen to have chosen the optimal
for the given BAC , this will result in a suboptimal

solution.
We start with the following interesting result that links the

roots of the LLR-function with choices of parameters for which
two different codes have identical error probability. This will
then allow us to find the boundaries where the best codes under
a fixed decision rule change from to (see also Fig. 8
below).
Theorem 25: Fix a blocklength , a code parameter
, and a decision rule threshold . Then, the roots of

(61)

are identical to the roots of

(62)

where denotes the error probability of code
decoded under the decision threshold . Moreover, for a fixed

, there exists at most one such that (61) holds;
and for a fixed , there exists at most one such
that (61) holds. This means that if (61) has a solution, then this
solution is unique for a fixed or .

Proof: See Appendix A-C.
Using Theorem 25 and Proposition 40, we can now state con-

ditions on such that is best under a fixed decision rule .

Fig. 8. Best codebooks on a BAC for a fixed decision rule: for all possible
this plot shows the best choice of the code parameter . The blocklength

is and the decision rule is .

Corollary 26: Fix a blocklength and a decision rule . Then,
the flip code of type , is uniquely best for a fixed decision
rule if and only if belongs to

(63)

If the region is empty, then is not best for any channel.
Proof: From (140) in the Proof of Theorem 25 in

Appendix A-C and from assumption (1) it follows that

(64)
As we know from Proposition 40 that is
increasing in , this means that if both (64) and

(65)

are satisfied, the code is best for the given channel
, for the given blocklength , and for the fixed decision

rule .
We illustrate Corollary 26 by an example. We fix ,
, , and let increase from 0 to ,
see Fig. 7. Starting with , we check that

(66)

for all , i.e., . Next, we check
:

(67)

for small , i.e., the code is best for those . When in-
creasing as soon as , there is a
change and becomes best. Further increasing while
keeping then finally reveals the last change that happens
at the root of . So there are three best codes
for :

1) is best in
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Fig. 9. Globally optimal codebooks on a BAC for a blocklength (iden-
tical to Fig. 5). The shown boundary between and is identical to
the corresponding boundary given in Fig. 8, where a fixed decision rule
has been assumed.

2) is best in

.

3) is best in .

In Fig. 7, the error probabilities of the various flip codes are
shown as a function of . The best choices of for all values of

for and are shown in Fig. 8.
Corollary 26 shows that for a fixed decision rule , the choice

of the best code parameter depending on the given parameters
, , and is much easier than the choice of the jointly optimal
and for a globally optimal code. In particular, we have the
following regular structure.
Corollary 27: Fix a blocklength and a decision rule , and

consider a BAC. If we increase or decrease , then the best
value of is nonincreasing.
More sloppily, we can say that when we are moving inside

of (see Fig. 2) to the right or downward, the best will either
remain the same or be reduced by 1. This is in stark contrast to
the picture of the regions of optimal codes where the optimal
changes in a seemingly random manner. For an illustration,
compare the best codes for a fixed decision rule in Fig. 8
with the corresponding globally optimal regions of Fig. 5.
Even more importantly, Theorem 25 also allows us to locate

the exact location of some of the boundaries between the dif-
ferent areas of globally optimal codes (see Fig. 5).
Corollary 28: Consider the boundary between two areas of

globally optimal codes (as, e.g., shown in Fig. 5). If the op-
timal decision rule on both sides of the boundary takes the same
value and if the optimal code on the left is , while the
optimal code on the right is , then this boundary is identical
to a corresponding boundary in the situation with a fixed deci-
sion rule . In particular, this boundary is given by the roots of

.
We again show the example of from Fig. 5: in Fig. 9,

the same plot is shown including a boundary that is identical to
a boundary given in Fig. 8.

We also would like to point out that the results for a given
fixed decision rule simplify the search for a globally optimal
code considerably. Such a search can be summarized by the
following algorithm.
Step 0: Fix a channel and find the best under the

fixed decision rule and its corresponding error
probability . Then, set .

Step 1: Find the best under a fixed decision rule and
the corresponding error probability .

Step 2: Check whether . If yes, set

and .
Step 3: If , and return to Step 1.

Otherwise put out (describing the optimal code)
and (giving the minimum error probability).

VIII. ANALYSIS OF THE ZC

In this section, we investigate the special case of a ZC more
in detail.

A. Optimal Codes With Two Codewords ( )

Theorem 29: For a ZC and for any , an optimal code-
book with two codewords is the flip code of type 0,

. It has an error probability

(68)

Proof: Due to Theorem 23, we can restrict our search to
flip codes of some type , , i.e., is the flipped
version of .
For such a flip code, we observe that due to the peculiarity

of the ZC that will never flip a zero to a one, an error can only
occur when the received vector is the all-zero vector :

if
if .

(69)

This error probability is minimized if one of the codewords is
the all-one codeword; hence, is optimal.
Note the optimal code is linear. Moreover, from the proof it

also follows that is the unique optimal code.

B. Optimal Codes With Three or Four Codewords ( )

Before we describe how we address the optimal codes with
3 or 4 codewords for a ZC, we first show that an optimal code
must contain the all-zero vector as a codeword.
Theorem 30 (Sufficient Set of Candidate Columns for the ZC):

For a ZC, for any blocklength , and for an arbitrary number
of codewords, an optimal codebook must contain the all-zero
codeword .

Proof: See Appendix B-A.
Next we show that the weak flip codes of type are

optimal codes with three or four codewords for a ZC.
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Theorem 31: For a ZC and for any , an optimal code-
book with three codewords or four codewords is
the weak flip code of type , , with

(70)

Moreover, the optimal code achieves the average error
probability

if

if .
(71)

Proof: See Appendix B-B.
Similarly to the case of , we see that for the

optimal code given in Theorem 31 is linear. Also note that from
the discussion in Appendix B-B it follows that for even , these
linear codes are the unique optimal codes, while for odd there
are other (also nonlinear) designs that achieve the same optimal
performance.
For , the optimal codes are not unique. Indeed any

choice of and with is optimal.
It is remarkable that these optimal codes perform quite well

even for a very short blocklength. As an example, consider four
codewords of blocklength that are used over
a ZC with . The optimal average error probability
is . If we increase the blocklength
to , we already achieve an average error probability

. The asymptotic behavior of the op-
timal error probability for going to infinity will be discussed
in next section.
Next we will investigate the optimal code design from a new

perspective: based on the fact that we consider a DMC, i.e.,
a channel that is memoryless and stationary, we would like to
construct the codes recursively in the blocklength .
We start with the following lemma.
Lemma 32: Fix some arbitrary integers , , and
. Consider a DMC and a code for this DMCwith

codewords and blocklength , and create a new code
by appending arbitrary column vectors to the codebook ma-
trix of . Then, the average success probability of this new
code cannot be smaller than the success probability of the orig-
inal code:

(72)

Proof: For a given code , the average success prob-
ability is given by

(73)

Now we consider the new codebook that is formed by
appending columns to the original codebook matrix of .
For convenience, we express the new codewords by

(74)

(75)

and likewise the extended received vector by

(76)

Assume that a length- received vector is in the th de-
coding region, . According to the ML decoding
rule, a corresponding new received vector will change
to another decoding region if

(77)

Obviously, if no extended received vectors change its original
decoding region from its length- counterpart, then

(78)

(79)

where denotes the output alphabet. However, if some
changes its original decoding region of blocklength , the new
success probability will be

(80)

(81)

The proof of Lemma 32 is completed by noting that, from (77),
is always nonnegative.

Definition 33: The term in (81) is called total
probability increase for a step-size and describes the amount
by which the average success probability of the code
grows when column vectors are appended to its codebook
matrix.
Lemma 34: For a ZC, for any , and for ,

consider the weak flip code of type with four codewords
, , and append a column to the codebook matrix to

create a new code of length . Then, the total probability
increase is maximized if, among all possible columns,
we choose . If , or if is odd and , then
this choice is unique.
For , appending or to is equally

optimal.
Proof: See Appendix B-C.
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We would like to point out that the codes can be seen
as double-flip codes consisting of the combination of the (two-
codeword) flip code of type 0 with the (two-codeword) flip code
of type :

(82)

with and defined in (26).
From the recursive technique that we have used in the deriva-

tion of Lemma 34 and that is based on the addition of columns
to the codebook matrix, it immediately follows that our optimal
codes can be constructed recursively in . Concretely, we have
the following corollary.
Corollary 35: The optimal codebooks defined in Theorem

31 for and can be constructed recursively in
the blocklength by adding a column that yields the maximum
total probability increase. We start with an optimal codebook
for :

(83)

Then, we recursively construct the optimal codebook for
by using and appending

if

if .
(84)

Proof: We only need to show that the constructed codes
from (84) are equivalent to the optimal codes given in Theorem
31. The optimal code for and is trivial and given
by (83). Next assume that for blocklength , is optimal.

From Lemma 34, we know that the largest total probability in-
crease is achieved when adding column . Now note that for
even with , adding the column to the code

will result in a code that is equivalent to : we only

need to exchange the roles of the second and third codeword
and then re-order the columns. For odd with , adding

the column to the code results in .

Hence, we see that is still optimal. The claim now

follows by induction in . The case with three codewords
can be proved in a similar manner.
Note that we have actually proven that any codebook con-

sisting of columns and columns arbitrarily chosen
from or is optimal on a ZC (see the main discussion in
Appendix B-B).
We conclude this section by a remark. While it is very intu-

itive to construct the codes recursively, i.e., to start from an op-
timal code for and then to add one column that maximizes the
total probability increase, unfortunately, from a proof perspec-
tive, such a recursive construction only guarantees local opti-
mality: one still needs a proof (Theorem 31) that the achieved
code of blocklength is globally optimum.

Fig. 10. Exact value of, and bounds on, the performance of an optimal code
with codewords on the ZC with as a function of the block-
length .

C. Error Exponents

Since the ZC is not pairwise reversible, the error exponents
for or codewords were previously unknown.
Using that for the optimal code we have

if

if
(85)

we can now compute the error exponents

(86)

Note that the minimum discrepancy for the
generalized fair weak flip code for every is

if

if

if .
(87)

D. Application to Known Bounds on the Error Probability
for a Finite Blocklength

Since we now know the optimal code structure and its per-
formance, it is interesting to compare it to the known bounds
described in Section VI. Figs. 10 and 11 compare some SGB
bounds and the Gallager bound with the exact performance of
the optimal code (for and codewords, respec-
tively). Besides the Gallager bound, we plot the SGB lower
bound based on the optimal code structure (thereby making sure
that this lower bound is valid generally), and we show two SGB
upper bounds: one that is based on the optimal code design and
one that is based on the fair weak flip code used by Shannon
et al.
We see that the SGB upper bound that is based on the optimal

code is quite close to the exact performance, in particular, it
exhibits the correct error exponent. The SGB upper bound that
is based on the fair weak flip code, on the other hand, does not
achieve the error exponent (which can be expected because the
ZC is not pairwise reversible). Also the Gallager bound does
not achieve the correct exponential behavior. The SGB lower
bound is quite loose.
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Fig. 11. Exact value of, and bounds on, the performance of an optimal code
with codewords on the ZC with as a function of the block-
length .

E. Conjectured Optimal Codes With Five Codewords ( )

The idea of designing an optimal code recursively promises
to be a very powerful approach. Unfortunately, for larger values
of , we might need a recursion from to with a step-
size . In the following, we conjecture an optimal code
construction for a ZC in the case of five codewords with
a different recursive design for odd and even (i.e., with a
step-size ).
We define the following five weak flip column vectors:

(88)

We claim that an optimal code can be constructed recursively for
even in the following way. We start with an optimal codebook
for :

(89)
Then, we recursively construct the optimal codebook for
, even, by using and appending

if

if

if

if

if .

(90)

For odd, we start with the length-9 code

(91)

and recursively construct the optimal codebook for ,
odd, by using and appending

if

if

if

if

if .

(92)

Note that the recursive structure in (90) and (92) is actually iden-
tical apart from the ordering. Also note that when increasing the
blocklength by 10, we add each of the five column vectors in
(88) exactly twice. For , the optimal code structure goes
through some transient states.

IX. ANALYSIS OF THE BSC

A. Optimal Codes With Two Codewords ( )

Theorem 36: For a BSC and for any , an optimal code-
book with two codewords is the flip code of type for
any .

Proof: From Theorem 23, we already know that there must
exist a flip code that is optimal. Moreover, Theorem 23 also
shows that the all-zero and the all-one column in a codebook
matrix is strictly suboptimal. So, we only have two possible
choices of candidate columns: and . By the sym-
metry of a BSC, both columns will result in an identical perfor-
mance. Therefore, every flip code has the same performance,
i.e., all of them must be optimal.

B. Optimal Codes With Three or Four Codewords ( )

Unlike in the case of a ZC, for a BSC it is not easy to derive
the exact average error probability expressed only by the candi-
date column parameters . So instead we use a recursive code
construction that guarantees largest total probability increase.
Theorem 37: For a BSC with arbitrary cross-over probability

, the optimal code with three codewords or
four codewords and with a blocklength is

(93)

If we recursively construct a locally optimal codebook with
three codewords or four codewords and with
a blocklength by using and appending a new
column, the total probability increase is maximized by the fol-
lowing choice of appended columns:

if

if

if .

(94)

Authorized licensed use limited to: Hsuan Yin Lin. Downloaded on May 01,2020 at 07:53:17 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: OPTIMAL ULTRASMALL BLOCK-CODES FOR BINARY DISCRETE MEMORYLESS CHANNELS 7359

Proof: See Appendix C-A.
While Theorem 37 only guarantees local optimality for the

given recursive construction, much points to that the given con-
struction indeed is globally optimum. Indeed, we can prove this
for the case .
Theorem 38: For a BSC and for any , the weak flip

code of type , , where

(95)

is an optimal codebook with three codewords . Note that
the recursively constructed code of Theorem 37 is equivalent to
the optimal code given here

(96)

Proof: See Appendix C-B.
Using the shorthands

(97)

the code parameters of these optimal codes can be written as

if
if
if

(98)

and the exact average success probability can be derived recur-
sively in the blocklength : starting with

(99)

we have7

(100)

if ;

(101)

if ; and

(102)

if .
The average success probability of can be expressed

in a similar manner.

7For a meaning of the counters , see the explanations before (234) in
Appendix C.

Note that for , the optimal codes given in Theorem 36
can be linear or nonlinear. For , by the definition of the
weak flip code of type , the locally optimal codes
are linear. As mentioned, there exists strong evidence that these
codes are also globally optimal. Indeed, it can be shown that
among all linear codes with four codewords, they are optimal.
We also would like to point out the regularity of the code

design in Theorem 37 that repeats in with a period of 3. For
, we expect a similar behavior, but with a period that is

larger than 3.
Moreover, a closer inspection of the proof of Theorem 38

shows that when , the received vector farthest from
the three codewords is

(103)

which corresponds to the choice of the fourth codeword in
.

C. Pairwise Hamming Distance Structure

As already mentioned in Section III-D, it is quite common in
conventional coding theory to use the minimum Hamming dis-
tance or the weight enumerating function (WEF) of a code as a
design and quality criterion [12]. This is motivated by the equiv-
alence of Hamming weight and Hamming distance for linear
codes, and by the union bound that converts the search for the
global error probability into pairwise error probabilities. Since
we are interested in the globally optimal code design and the
best performance achieved by an ML decoder, we can neither
use the union bound, nor can we a priori restrict our search to
linear codes. Note that for most values of , linear codes do not
even exist.8

We would like to come back to the example shown in
Section IV and further deepen our analysis of the minimum
Hamming distance of our optimal codes on the very sym-
metric BSC. Although, as (17) shows, the error probability
performance of a BSC is completely specified by the Hamming
distance between codewords and received vectors, we will now
demonstrate that a design based on the minimum Hamming
distance can fail, even for the very symmetric BSC and even for
linear codes. In the case of a more general (and not symmetric)
BAC, this will be even more pronounced.
We compare the optimal codes given in Theorem 37 with the

following different weak flip code with code parameters

if
if
if .

(104)

This code can be constructed from the optimal code
by appending a suboptimal column9 and—based on a closer

8Interestingly, a subfamily of the weak flip codes can be shown to have many
linear-like properties. For more details see [14].
9The choice of column depends on .
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inspection of the proof of Theorem 37—can be shown to be
strictly suboptimal.
Recalling Lemma 13, we compute the pairwise Hamming dis-

tance vector of the optimal code for :

if
if
if

(105)

i.e.,

if
if
if .

(106)

For , we get accordingly

(107)

with the same values for the minimum Hamming distance as for
the .
Comparing this with the suboptimal code (104) now yields

for :

if
if
if

(108)

i.e., in all cases. For , we have

(109)

with also in all cases.
Hence, we see that for the minimum Hamming

distance of the optimal code is and therefore strictly
smaller than the corresponding minimum Hamming distance
of the suboptimal code.
By adapting the construction of the strictly suboptimal code

, a similar statement can be made for the case when
.

We have shown the following proposition.
Proposition 39: On a BSC for or and for all
with or , codes that maximize

the minimum Hamming distance can be strictly
suboptimal. This is not true in the case of .
As a matter of fact, using a result from [14], one can show that

on a BSC for or and in the case of ,
all codes that maximize the minimum Hamming distance are
strictly suboptimal.

Fig. 12. Exact value of, and bounds on, the performance of an optimal code
with codewords on the BSC with as a function of the block-
length .

D. Application to Known Bounds on the Error Probability
for a Finite Blocklength

We again provide a comparison between the performance of
the optimal code to the known bounds of Section VI.
Note that the error exponents for codewords are

(110)

Moreover, for ,

if

if

if .

(111)

Figs. 12 and 13 compare the exact optimal performance for
and , respectively, with some bounds: the SGB

upper bound based on the weak flip code used by Shannon et
al.,10 the SGB lower bound based on the weak flip code (which
is suboptimal, but achieves the optimal and is therefore
a generally valid lower bound), the Gallager upper bound, and
also the PPV upper and lower bounds.
We can see that the PPV upper bound is tighter to the exact

optimal performance than the SGB upper bound. Note, how-
ever, that only the SGB upper bound exhibits the correct error
exponent as is large enough. It is shown in [18] that, for
going to infinity, the random coding (PPV) upper bound tends
to the Gallager exponent for [6], which is of course not
necessarily equal to for finite .
Concerning the lower bounds, we see that the PPV lower

bound (metaconverse) is much better for finite than the SGB
bound. However, for large enough, its exponential growth will
approach that of the sphere-packing bound [15], which does not
equal to either.

10The SGB upper bound based on the optimal code performs almost identi-
cally (because the BSC is pairwise reversible) and is therefore omitted.
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Fig. 13. Exact value of, and bounds on, the performance of an optimal code
with codewords on the BSC with as a function of the block-
length .

Once more we would like to point out that even though the
fair weak flip codes achieve the error exponent, they are strictly
suboptimal for every .

X. CONCLUSION

We have studied the optimal code design of ultrasmall block-
codes for the most general binary discrete memoryless channel,
the so-called binary asymmetric channel (BAC). For an arbitrary
finite blocklength , we have analyzed the structure of optimal
codes with two codewords.
We then have put special emphasis on the two most important

special cases of binary channels, the Z-channel (ZC) and the
binary symmetric channel (BSC). For the ZC and for an arbitrary
finite blocklength , we have derived an optimal code design
with four or less messages and we have conjectured an optimal
code design with fivemessages. For the BSC and for an arbitrary
finite blocklength , we have derived an optimal code design
with two or three messages and we have conjectured an optimal
code design with four messages.
Note that since the optimal codes we proposed do not depend

on the cross-over probability of the channel, the optimal codes
remain the same even if the channel is nonergodic or nonsta-
tionary. Also note that the optimal weak flip codes are by defi-
nition coset codes: the nonlinear code is always a coset
of the linear code. However, they are not fixed compo-
sition codes.
We have introduced a new way of generating these codes re-

cursively by using a columnwise build-up of the codebook ma-
trix. This column view of the codebook turns out to be a more
powerful tool for analysis than the standard rowwise view (i.e.,
the analysis based on the codewords). We believe that the recur-
sive construction of codes may be extended to a higher number
of codewords and also to more complex channel models. In-
deed, we have achieved some first promising results for the bi-
nary erasure channel (BEC) [14]. Note, however, that in these
more complex situations we might need a recursion from to

with a step-size .

We have also investigated the well known and commonly
used code parameter minimum Hamming distance. We have
shown that it may not be suitable as a design criterion for op-
timal codes, even for very symmetric channels like the BSC.
Finally, we would like to point out that the family of weak flip

codes defined in Section V (and in particular the subfamily fair
weak flip codes) turns out to have many interesting properties.
A first closer investigation of some of these properties and the
relation of these codes to linear codes can be found in [14].

APPENDIX A
DERIVATIONS CONCERNING THE BAC

A. LLR Function

Proposition 40 (Properties of ):
1) If , then irrespective of

, , or .
2) is a nonincreasing function in for every

, :

(112)
3) For certain values of , the value of is
always nonnegative (or always nonpositive) for all and
:

if
if
depending on
if

(113)

4) is a nondecreasing function in for fixed
, , and .

5) is a nondecreasing function in for fixed
, , and .

6) For ,

(114)

Proof: These properties follow quite easily from the def-
inition of and the relations (1)–(3). We only
show a proof of the second property:

(115)

B. Alternative Proof of Theorem 23

Assume that the optimal code for blocklength is not a flip
code. Then, the code has a number of positions where both
codewords have the same symbol. The optimal decoder will ig-
nore these positions completely. Hence, the performance of
this code will be identical to a flip code of length .
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We therefore only need to show that increasing will always
allow us to find a new flip code with a better performance. In
other words, Theorem 23 is proven once we have shown that

(116)

Note that for the length- flip code of type

(117)

we can derive two nontrivial length- codes

(118)

Both of these codes happen to be (or at least be equivalent to)
flip codes. We would like to remind the reader that is a
flipped version of .
Since in the following we are going to compare different flip

codes of either length or , we need to clarify our notation.
So for the received vectors we use a superscript to de-
note their length, and for the codewords , optimal decoding
threshold , and the Hamming distance between a re-
ceived sequence and the first codeword we use the superscript

to denote their affiliation with the corresponding code of
length . Hence, as shown in Theorem 24, the optimal ML de-
cision rule for can be expressed as

if
if .

(119)

The threshold satisfies . Note that when
, the decision rule is equivalent to a majority rule.

Also note that when is even and , the decisions for

and are equally likely, i.e., without loss of generality
we then always decode to .
So let the threshold for be .We will now argue

that the threshold for and (compare with (118))
must satisfy

(120)

Consider first the code and assume by contradiction for
the moment that . Then, pick a received
with that (for the code ) is decoded to

. The received length- vector has

, i.e., it will be now decoded to .
This, however, is a contradiction to the assumption that the ML
decision for the code was .
Second, again considering code , assume by contra-

diction that . Pick a received with
that (for the code ) is decoded to

. The received length- vector has

, i.e., it will be now decoded to
. This, however, is a contradiction to the assumption that

the ML decision for the code was .
The same arguments also hold for the other code .

Hence, we see that there are only two possible changes with
respect to the decoding rule to be considered. We will next use
this fact to prove that .
The error probability of a length- code with two codewords
and is given by

(121)

For , (121) can be written as follows:

(122)

(123)

(124)

Here, in (123) we use the fact that
and ; and in (124) we combine the

terms together using the definition of according to (26)
(and (118)).
We can now distinguish the two cases (120):
i) If the decision rule for is unchanged, i.e.,

, we only need to take care of the third summation
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in (124) that contains some terms that will now be de-
coded differently. We split this sum up into two parts:

(125)

Since we have assumed that , we know
that for all with the length-
received vector has

and will be decoded to . Hence, we must
have

(126)

Hence, we have

(127)

(128)

(129)

ii) If the decision rule is changed such that ,
we need to take care of the second summation in (124)

that contains some terms that will now be decoded differ-
ently. Again, we split this sum into two parts:

(130)

Since we have assumed that , we know
that for all with the length-
received vector has

and will be decoded to . Hence, we must have

(131)

The rest of the argument now is analogous to Case (i).
This proves that . The remaining

proof of is similar and omitted.

We remark that while in general ,
we only achieve equality if is even and .
The reason why we show this long derivation in addition

to the compact proof given in Section VII-A is the expression
(124) that explicitly states the error probability as a function of
the ML decoder threshold. In the sequel of (124), we had to
make a case distinction depending on what the correct ML de-
coder looks like. In the proof of Theorem 25 in the following
section, we will assume that the decoder is fixed, which will
allow us to make even better use of (124).

C. Proof of Theorem 25

In order to derive the error probability expressions for
and , we use the flip code and add either a column

or , respectively. Moreover, we assume that
is decoded using the same fixed decoder threshold .

Note that since we are using a similar approach as in
Appendix A-B, we also apply the notation introduced there,
i.e., we use a superscript to denote length and affiliation.
Following the same structure as in (124), we write the error

probability of for the given decoding rule as follows:

(132)
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(133)

Similarly, we can express the error probability of :

(134)

(135)

Subtracting (135) from (133) then yields

(136)

(137)

(138)

(139)

(140)

where in (139) we make use of our assumption that is
decoded also using the same threshold .
Hence, we see that unless , in which case the differ-

ence is always zero, can only be
zero if

(141)

From the definition of the log-likelihood ratio, we see that if we
fix , then there exists at most one such that (141) is satisfied.
The same is true if we fix and search for an .

APPENDIX B
DERIVATIONS CONCERNING THE ZC

A. Proof of Theorem 30

Consider a general codebook matrix with codewords
. Considering Remark 6, we can assume without

loss of generality that

(142)

and that all ones of the first codeword are in the last positions,
i.e.,

(143)

We are going to show that an optimal codebook must satisfy
.

We note that for any with
, and for every codeword , ,

the conditional channel law can be expressed as

(144)

where denotes again the indicator function, and where we
make explicit use of the shape of (143), the structure of the
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considered received vector , and the assumption (142). Note
that the value of (144)—if positive—only depends on via
its Hamming weight. Hence,

(145)

(146)

where (146) follows from (142). Since when transmitting ,
the received sequence cannot have any ones in the first
positions, this now shows that the optimal decoding region for
the first codeword is

(147)

which yields the conditional success probability

(148)

Hence, we see that independently of the choice of .
If we choose , though, then the size of is min-
imized, i.e., many vectors that belong to for
will be moved to some other decoding region , .
This move will increase the success probabilities of the cor-
responding other codewords (because the success probabilities
will contain more terms in their corresponding sum over all

). Hence, since remains constant, the total suc-
cess probability is increased.
Note that this increase is strictly larger than zero if there exists

some other codeword that has one or more ones in the last
positions.

B. Proof of Theorem 31

The proof of Theorem 31 is based on an exact expression of
the average success probability as a function of the numbers of
candidate columns . The problem is then transformed into an
optimization problem.
We first consider the easier case of . By Theorem 30

and because the all-zero column can be ignored (based on the
argument used in the proof of Theorem 23), we can restrict our
search to the candidate columns given in (28). Hence, for any
blocklength , with , consider an arbitrary
codebook and, without loss of generality, assume that

(149)

Moreover, note that

(150)

and (because ) that .
The decoding region of the first codeword is just the all-zero

vector with .

Defining and using a derivation similar to
(145)–(147), we further realize that

(151)

and

(152)

Finally, the remaining belong to :

(153)

(154)

with

(155)

(156)

Hence, the average success probability for a codebook
with and is

(157)

The proof for the case is now completed by showing
that the average success probability (157) is maximized by the
choice . Note that the exact choice of and is
irrelevant as long as .
In the case of , we cannot only rely on the candidate

columns in (29), but unfortunately need to consider totally seven
candidate columns:11

(158)

We use to describe an arbitrary code,
and again, without loss of generality, assume that

(159)

Also note that
(160)

(161)

(162)

(163)

and, as a result, and . Again, we
investigate the decoding regions with the corresponding success
probabilities.

11By the argument shown in the proof of Theorem 23 and by Theorem 30,
the other nine columns can be excluded.
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The first two decoding regions are very similar to the case of
and yield

(164)

Then, we have

(165)

with

(166)

The fourth decoding region is more complicated. It can be
written as

(167)

where

(168)

Hence,

(169)

(170)

(171)

(172)

where

(173)

and

(174)

Hence, the average success probability for a codebook
with and is

(175)

and is maximized for

(176)

Furthermore, it can be shown that the optimum is unique for
even , while there are also other solutions for odd .

C. Proof of Theorem 34
We apply (157) and (175) to the weak flip code of type .
Corollary 41: On a ZC, for or , and for any
, the optimal decoding regions for the weak flip

code of type , , for , are

(177)

(178)

(179)

(180)

The corresponding average success probabilities are

(181)

(182)

Note that all received sequences in have zero proba-
bility of occurring in the situation of because the code

does not contain the all-one codeword. Therefore, we do
not need to include them into any decoding region for .
We start with and recall that we can restrict our search

to the seven columns given in (158). To prove Lemma 34, we ap-
pend an additional bit to all four codewords of as follows:

(183)

where and where and are given in (26)
with . We denote12 this new code by

. We now need to establish the decoding regions for the
new code . If we simply extend the decoding regions

12Note that again we use a proof technique that uses a given code to create a
new code by adding a column to the codebook matrix. We therefore again use
the notation introduced in Appendix A-B, i.e., we use superscripts to clarify
length and affiliation.
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given in (177)–(180) by one bit, , for
, then we retain the same success probability

because

(184)

(185)

(186)

However, it is quite clear that these regions are in general no
longer the optimal decision regions for . So the question
is how to fix them to make them optimal again (and thereby also
finding how to optimally choose ).
First note that if , adding a 0 to the received

vector will not change the decision because 0 is the
success outcome anyway. Similarly, if , adding a
1 to the vector will not change the decision .
Second, we claim that even if , all received vec-

tors still will optimally be decoded to .
To see this, we have a look at the four cases separately:
1) : The decoding region only contains
one vector: the all-zero vector. We have

(187)

independently of the choices for , .
Hence, we decide for .

2) : All vectors in contain ones in po-
sitions that make it impossible to decode it as or

. On the other hand, obviously is less likely
than , i.e., we decide .

3) : All vectors in contain ones in po-
sitions that make it impossible to decode it as or

. On the other hand, obviously is less likely
than , i.e., we decide .

4) : All vectors in contain ones in posi-
tions that make it impossible to decode it as , ,
or . It only remains to decide .

So, it only remains to investigate the decisions made about the
vectors in if . Note that we do not need

to bother about as it is impossible to receive such a
vector. For , 2, or 3, if , the received vectors
in will change to another decoding region not equal
to because .

1) : If we assign these vectors (actually, it has only

one) to the new decoding region , the conditional
success probability for is increased by

(188)

(189)

(190)

where

if
if .

(191)

Note that we only have a positive increase in the success
probability if . Similarly, we compute

(192)

(193)

From , we see that gives the highest
increase, followed by and then . Hence, in order
to represent this choice of ordering, we rewrite (190),
(192), and (193) as follows:

(194)

(195)

(196)

2) : In this case, only yields a nonzero
additional conditional success probability

(197)

(198)

(199)

3) : Again, only yields a nonzero addi-
tional conditional success probability

(200)

(201)

For , we can now conclude that the unique best
solution for the choice of , yielding the largest increase
in success probability in (194), (195), (196), (199), and (201),
is as follows:

(202)

which corresponds to . This choice will lead to a total suc-
cess probability increase of

(203)

(204)

If is even and , then . In this case, still
yields the largest increase in success probability, but it is not
anymore the unique choice to do so.
The proof for is similar and omitted.
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APPENDIX C
DERIVATIONS CONCERNING THE BSC

A. Proof of Theorem 37
We first consider the case . Our proof is based on

induction in . We start with a locally optimal code of length
and then prove that appending a column according to the

choice given in Theorem 37 will result in a new locally optimal
code that maximizes the total probability increase. We rely on a
couple of observations that for clarity are summarized here:
1) The proof that the length-2 code given in (93) is optimal is
straightforward and omitted.

2) We do not need to worry about any other codebook
columns than those given in (28) because first the all-zero
and the all-one columns can be neglected by an argument
similar to Theorem 23, and because second the flipped
version of the columns , , and will result in the
same performance because the BSC is strongly symmetric.

3) Due to (18) and Lemma 13, the average success probability
of a weak flip code of parameters remains un-
changed with respect to any permutation of the code pa-
rameters. Hence, without loss of generality, we may as-
sume that .

4) We need to distinguish three cases in the induction from
to , depending on whether , 1, or 2.

Note that once again we use the notation introduced in
Appendix A-B, i.e., we use a superscript to denote
length and affiliation. Moreover, we introduce the following
shorthands:

(205)

and

(206)

Be aware not to confuse , which is a vector that com-
pares all length- codewords with a given received vector ,
with the pairwise Hamming distance vector , which
compares all possible pairing combinations of the codewords of
a codebook .
We also remind the reader that and . Using

these shorthands, we can describe the ML decoding rule for a
BSC quite simply as

(207)

We start with an observation about a basic property of the
weak flip code given in (95).

Claim 42: For the weak flip code of (95) , the largest
received Hamming distance between any and the nearest
codeword is given by the minimum Hamming distance of the
codebook

(208)

Proof: It is not too difficult to see that a that achieves the
maximum in (208) should have ones, ones, and zeros in
the positions where the optimal codebook consists of , ,
and , respectively:

(209)

Then,

(210)

(211)

(212)

(213)

Note that for other code structures, this claim is not true in
general.
Next note that the (length-3) pairwise Hamming distance

vector of any code will have exactly two components
increased by 1 when appending either , , or to the
codebook matrix to form a new code . For example, if we
add , then

(214)

We are now ready for our induction proof.

1) Case I: Step from to :

We start with the code , whose code parameters, pair-
wise Hamming distance vector, and minimum Hamming dis-
tance are as follows:

(215)

(216)

(217)

The corresponding success probability formula looks as
follows:

(218)

(219)

(220)
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(221)

where in the last equality we used the trick to write

(222)

Appending : We now build a new length- (weak flip)
code from the given code by appending

. The cases when we append or will be dis-
cussed later. The new code has the following parameters:

(223)

(224)

(225)

Note that we can rewrite (221) in the following way:

(226)

We compare this with the success probability of the new code

(227)

where we use to denote the decoding region of the new
code . In order to be able to compare (226) with (227),
we need to be able to compare with and

with . Note that every can be
uniquely written as some plus an appended 0 or 1.
Since we have appended to the code of length
, it is obvious that

(228)

(229)

(230)

The other three cases in (226) are more problematic. For
example,

(231)

depending on the exact value of .
To be able to investigate the different possible cases de-

pending on , we introduce the shorthand

(232)

to denote the distance to the closest codeword (which is the
first codeword in this case because we investigate

) and another shorthand to denote any value strictly
larger than . The received Hamming distance vector can now
take one out of four possible forms, e.g., in the currently inves-
tigated situation of (232) where :

(233)

Since the code has been extended by , it
follows that if we append a 1 to , then only the first com-
ponent of will be increased by 1 in comparison to

, while the second and third component remain
unchanged. This means that in the fourth case in (233), the new
vector will belong to , while in the other cases

it will belong to or . However, we will show next
that the first and the second case in (233) can never occur!
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To show this, first of all note that because the code-
book’sminimumHamming distance between codewords is
and therefore it is not possible that a vector has a dis-
tance to two (or more) codewords that is smaller than . Also,
from Claim 42 it follows that .
Nowwe describe using defined anal-

ogously to (209). To that goal, we define to be the number of
positions where differs from when we only con-
sider the positions corresponding to , i.e., ,

So, each received vector can now be de-
scribed by , , and (e.g., the all-zero vector has

, , and ).
Then, for every , we define a matrix

(234)

from which the received Hamming distance vector
can be computed as follows:

(235)

It is straightforward to prove the following claim.
Claim 43: There exists no integer solution ,

, , , that satisfies

(236)

for and . But there do exist integer
solutions that satisfy

(237)

Proof: Omitted.
Recalling our discussion after (233), it now follows from

(236) that

(238)

Similarly, we can argue for the second problematic case of
(226):

(239)

depending on the exact value of . Note that

because we have added a 1 to the third
codeword. If we append a 0 to , then the second and the
third components of will be increased by 1 in com-
parison to , while the first component remains
unchanged. Again, the received Hamming distance vector can
take one out of four possible forms:

(240)

In the first two cases, will change to , in the

other two cases, it will remain in . However, both the first
and the second cases are not possible according to (236). Hence,

will remain in the second decoding region.
Finally,

(241)

depending on the exact value of :

(242)

In the first and third case, will change to ,

while in the other two cases, it will remain in . Again, the
first and the third cases are not possible according to (236).
Hence, we have shown that

(243)

(244)

(245)

Together with (228)–(230), this proves that the success proba-
bility of (227) is identical to the success probability of (226).
So in spite of increasing the length by 1, we have not im-
proved our performance.

Appending : Next, we investigate what happens if we
append . The new code has the following
parameters:

(246)

(247)

(248)
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One of the three problematic cases now is

(249)
depending on the exact value of given in
(240). If we append a 1 to , the first and the second
components of will be increased by 1 in compar-
ison to , while the third component remains
unchanged. This means that in the first and third case, the
new vector will belong to , while in the

second and the fourth case, it will belong to . According
to Claim 43, the third case is possible and does happen. If

, then we have that

(250)

without the additional increase by 1. This then means that the
success probability of (227) is strictly larger than the success
probability of because

(251)

and the choice of is effective.
The investigation of the other two problematic cases is similar

and omitted.
Appending : Finally, we look at the case when we

append . The new code has the following
parameters:

(252)

(253)

(254)

We realize that these code parameters simply are a permuta-
tion of the parameters of the case when we append . Hence,
the investigation will not fundamentally change, and we find an
identical performance. So, both choices of vectors and
are optimal. We decide to choose for keeping the ordering

.

2) Case II: Step from to :

In this case, we start with the code with parameters

(255)

(256)

(257)

If we append , we get a new code with the
following parameters:

(258)

(259)

(260)

If we append , we get a new code with the
following parameters:

(261)

(262)

(263)

And if we append , we get a new code with the
following parameters:

(264)

(265)

(266)

The corresponding investigation of possible situations now
reads as follows.

Claim 44: There exists no integer solution ,
, , , that satisfies

(267)

for and . But there do exist integer
solutions that satisfy

(268)

The investigation is similar and shows that appending is
strictly suboptimal, while appending and are equiva-
lent and optimal. Note that a more detailed examination can be
found in Appendix C-B.

3) Case III: Step from to :

In this case, we start with the code with parameters

(269)

(270)

(271)

If we append , we get a new code with the
following parameters:

(272)

(273)

(274)

If we append , we get a new code with the
following parameters:

(275)

(276)

(277)

And if we append , we get a new code with the
following parameters:

(278)

(279)

(280)
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The corresponding investigation of possible situations now
reads as follows.

Claim 45: There exists no integer solution ,
, , , that satisfies

(281)

for and . But there do exist integer solutions
that satisfy

(282)

The investigation is similar and shows that appending is
strictly suboptimal, while appending and are equiva-
lent and optimal.
This completes the proof for .
Finally, we turn to the case . We note that the fourth

codeword for is exactly the furthest received vector for
. We can therefore adapt the computation of the received

Hamming distance vector as follows:

(283)
The derivation follows then exactly the same lines as for

. The main difference is that we need to investigate more
different columns. Actually, we need to investigate also some
columns that have not been named in Definition 11 like, e.g.,

and prove that they are strictly suboptimal. The
details are omitted.

B. Proof of Theorem 38

This proof will use the same approach as Appendix C-A but
is much more elaborate. Unlike for the ZC, we do not have
a closed-form expression for the exact average success prob-
ability for given a general codebook . Hence, to solve the
global optimization problem for discrete variables, we still use
the method based on induction in . In contrast to Theorem 37,
and to be able to compare the total probability increase for all
possible codebooks, we use the recursive construction in block-
length for not only the locally optimal codebooks
given in Theorem 37, but also other locally optimal codebooks.
We again first consider the case , and for brevity, we

only discuss the case of . We summarize some important
observations for our long proof:
1) A principal lemma shows how to simplify the recursive
construction in the blocklength by fixing one of the code
parameters.

2) Because and by fixing the code parameter
, the only free discrete variable left is .We try to find the

best code parameters by examining all possible
code parameters for the given .

3) We will list all possible best code parameters when we fix
the code parameter .

4) Finally, we allow to be a free discrete variable again and
then prove that the optimal code parameters are equal to

.
The following lemma describes the optimal strategy for ap-

pending a new th column to a given code under the
constraint that one of the code parameters must remain fixed.

Lemma 46: For , consider the general code parame-
ters with , and . Fix
one of the code parameters and append a new th column being
one of the remaining two other column types. The following
choice will result in a maximal total probability increase:
1) If is fixed, append

if is even and is odd

if is even

if and are odd.
(284)

2) If is fixed, append

if is even but is odd

if is even

if and are odd.
(285)

3) If is fixed, append

if is even and is odd

if is even

if and are odd.
(286)

Proof: Analogously to (234), the general code parameters
with received Hamming distances

can be computed as follows:

(287)
Next we clarify the optimal decoding regions depending
on the appended th column.

Appending : Following the discussion in
Appendix C-A, we know that one of the problematic cases is

(288)
Depending on the exact value of in (233), the
first and third case in (233) will cause to change to

.
The other two cases are

(289)
and

(290)

For the situation of (289), the first and third case in (240)
will cause to change to . For the situation
of (290), except the fourth case, all other cases in (242) will
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cause to change to or . Note that
the third case in (233) and third case in (242) are identical,
and that without loss of generality, the length- re-
ceived vectors with equal optimality can be put in or

are assigned to . We then only compute the

increase in success probability from to when
.

Finally, to figure out what the total probability increase is
when appending , the only cases that we have to take into
account are

(291)

Hence—similarly to the derivations for (250) and fol-
lowing—we study the conditions that result in an integer
solution with a corresponding increase in success
probability. We first investigate the second case

(292)

(293)

(294)

(295)

There exist integer solutions if is even. On the other
hand, there exist no integer solutions if is odd. Sim-
ilarly, in the third case of (291), no integer solutions exist if

is even. Hence, we have shown that integer solutions
exist such that

(296)

Appending : Using the same argument, we can also
show that

(297)

Appending : In this case, we can show that

(298)

In the following, we will investigate the case when we fix .
The other two cases of Lemma 46 are similar in principal and
omitted.

To prove the first statement, we fix and only allow the code
parameters or to be increased by 1. Comparing (296) (and
its corresponding integer solutions (295)) with (297) (and its in-
teger solutions), it can be quickly deduced that the cases where
at least one of and is odd exhibit an ob-
vious behavior. For example, if is even and
odd, then the total probability increase when appending is
strictly larger than when appending . (Actually, in this situa-
tion, appending results in an unchanged success probability
because cannot be even.)
The problematic case is when both and

are even. Note that then there are only two possible values of
the code parameters : either all are even or all are
odd. We are going to show that appending will result in a
larger total probability increase.
First, we introduce the shorthands

(299)

Note that in the special case of , appending or
are equivalent since . Without
loss of generality we can therefore assume that . Then,
we have .
From (292)–(295), we obtain

(300)

(301)

(302)

with the solutions satisfying

(303)

Setting with then yields

(304)

(305)

Recalling that the range of the integer solutions is
, we now obtain the corresponding

as follows:

(306)
for , .
In this situation, depending on the solutions of

, there are

(307)

different with such that

(308)

(309)

Authorized licensed use limited to: Hsuan Yin Lin. Downloaded on May 01,2020 at 07:53:17 UTC from IEEE Xplore.  Restrictions apply. 



7374 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013

The increase of success probability for each such is then

(310)

Hence, the total probability increase for the new decoding re-
gion is

(311)

(312)

where in (311) we have interchanged the summations.
Note that in (306) we on purpose allow and to be

zero, even though this corresponds to . This
slight misuse of notation allows us to incorporate the first case

in (291) into the second case.
Finally, in the third case of , we

have

(313)

(314)

with solutions satisfying

(315)

Consequently, the corresponding is

(316)

with , .
As above, the total probability increase of the new decoding

region can now be derived as

(317)

(318)

To complete the proof of Statement (1) of Lemma 46, it only
remains to show that under the assumption we have
(318) (312). A first step toward this goal is achieved by Claim
47.

Claim 47: Let be two nonnegative integers, both
even or both odd, and let , be two nonnegative integers
with . Then,

(319)

(320)

(321)

(322)

Proof: Note that the equality follows
from the definition of the binomial coefficient. We then only
need to prove (322) for the case that , are both even. We
write

(323)

(324)

and divide (323) by (324). Since and , we obtain

(325)

where the inequality follows from the fact that provided that
,

(326)

for , , being positive integers.
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In the remainder of the proof, we only treat the case when
are all even. We subtract (312) from (318)

(327)

Observe that the second double-sum of (327) is strictly larger
than zero. The first double-sum can be rewritten as follows:

(328)

In the first term of (328), the factor consisting only of binomial
coefficients is equal to

(329)

with . For the case , we have

(330)

For the case , we have

(331)

For the remaining cases , we will only
illustrate the case , i.e., . Then, (329)
becomes

(332)

which for equals

(333)

because of Claim 47. However, if , then (332)
equals

(334)

Recalling that the range of is from 0 to , we now com-
bine pairs from (333) and (334) as follows: in (333) we take the
term corresponding to ( ), and in (334), we take
the term corresponding to ( ). Adding them
together yields

(335)

because . Furthermore, since is
strictly increasing in ,

(336)

Similarly, for the other cases with , the terms of
will always compensate for the terms of .

This shows that the whole summation still is larger than zero for
the case of .
The remaining cases can be shown

similarly.
The final step is showing that the second term of (328) is al-

ways strictly larger than zero, too. Again, we consider the range
of the parameters: , . For example,
for , (329) reads

(337)
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Since , we have and therefore,
by Claim 47, (337) is always lager than zero. We omit the re-
maining details.
This completes the proof that (318) (312).
The second and third statements of Lemma 46 can be proved

in a similar way.
From the proof of Lemma 46 we can also deduce that the total

probability increase can be computed recursively for each case
in Theorem 37.

Corollary 48: For a BSC and for any , the exact
average success probability of an optimal code with three code-
words can be derived recursively in blocklength : we
start with (99) and then apply (100)–(102).

Proof: It is quite simple to get the starting expression (99)
for from (93).
We only illustrate the calculation for the case

to . The optimal code parameters for
is . Since we are going to append for ,
the solutions of for
satisfy

(338)

The corresponding is

(339)

for , .
Therefore, the total probability increase from the third de-

coding region is

(340)

The other two cases are similar to (312) and (318).
Now we return to the proof of Theorem 38 and derive a strict

monotonicity property.
Corollary 49: For a BSC and a blocklength , any

code with parameters that satisfy
satisfies

(341)

Proof: Consider the codebook with code param-
eters . From blocklength to blocklength with
a fixed number , there are three possible code parameters ex-
tensions, as shown in Fig. 14. The condition of is
needed to make sure that at blocklength , the code parameters
ordering is still nonincreasing.
Using the same approach as in Lemma 46, we investigate four

cases for blocklength : and both even,
even and odd, odd and

even, and and both odd.

Fig. 14. All possible code parameters extensions from blocklength to
with fixed .

The two cases with one difference even and the other odd are
straightforward. For example, if is even and
is odd, then by Lemma 46 we have

(342)

Then, both and are odd, and therefore

(343)

and (since both and are even) by Lemma
46

(344)

(345)

For the case when both and are even, we
note from Lemma 46 that

(346)

and since is even but is odd, and
is even but is odd, we have

(347)

(348)

(349)

Finally, for the case when both and are
odd, we note that

(350)

Now since and are even and by
assumption , we can use a similar
reasoning as given in the proof of Lemma 46 to show that

(351)

(352)

(353)

Corollary 49 is useful for finding the optimized code param-
eters for a fixed .

Authorized licensed use limited to: Hsuan Yin Lin. Downloaded on May 01,2020 at 07:53:17 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: OPTIMAL ULTRASMALL BLOCK-CODES FOR BINARY DISCRETE MEMORYLESS CHANNELS 7377

Corollary 50: For a BSC and a blocklength ,
consider a code with parameters satisfying
and , . Then, the best choice for is13

if
if

if
, .

(354)

For the remaining derivations, we introduce the following short-
hand:

(355)

Proof: Note that , i.e., . From
Corollary 49, we know that for fixed the average success
probability is strictly increasing when grows to . Also
since , the two possible best choices of
code parameters can only be either

(356)

(357)

In the case of , the only possible code parameters is (356):
because of .

We now illustrate the case of , i.e., .
Then, (356) and (357) become

(358)
or

(359)

These two best choices both stem from the same -code

(360)

Since and
both are even, by Lemma

46, we have

(361)

The proofs of the remaining cases are similar and omitted.
The clue to the proof of Theorem 38 is now the following

claim, which is based on Corollary 50 and Lemma 46.
Claim 51: Among the codes given in (354), the average

success probability is decreasing in , for all . In partic-
ular, we have

(362)

Proof: In the case of , the best code parameters
are

(363)

(364)

respectively. These two best code parameters stem from the
-code

(365)

13Note that is fixed and is implicitly given as .

Since both and
are odd, by Lemma 46,

(366)

In the case of , the best code parameters
are

(367)

(368)

respectively, which both stem from

(369)

Since both and
are even,

(370)

The remaining cases are similar, and we omit the details. We
obtain

(371)

(372)

This completes the proof.
Now note that in the Proof of Theorem 37, we have shown

that

(373)

Therefore and because (by Claim 51) is de-

creasing in , we see that is the largest
average success probability among all possible code parame-
ters that satisfy .
Note that according to (366), for , there are two global

optimal choices of code parameters:
and .
The cases of and , the arguments are similar

and omitted.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423 and 623–656, Jul. and Oct. 1948.

[2] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, May 2010.

[3] M. C. Gursoy, “Throughput analysis of buffer-constrained wireless
systems in the finite blocklength regime,” in Proc. IEEE Int. Conf.
Commun., Kyoto, Japan, Jun. 5–9, 2011, pp. 1–5.

[4] T. J. Riedl, T. P. Coleman, and A. C. Singer, “Finite block-length
achievable rates for queuing timing channels,” in Proc. IEEE Inf.
Theory Workshop, Paraty, Brazil, Oct. 16–20, 2011, pp. 200–204.

[5] A. Martinez and A. Guillén i Fàbregas, “Saddlepoint approximation of
random coding bounds,” in Proc. Inf. Theory Appl. Workshop, Univ.
California, San Diego, CA, USA, Feb. 6–11, 2011, pp. 1–6.

[6] R. G. Gallager, Information Theory and Reliable Communication.
New York, NY, USA: Wiley, 1968.

[7] S. Shamai (Shitz) and S. Verdú, “The empirical distribution of good
codes,” IEEE Trans. Inf. Theory, vol. 43, no. 3, pp. 836–846,May 1997.

[8] C.-L. Wu, P.-N. Chen, Y. S. Han, and Y.-X. Zheng, “On the coding
scheme for joint channel estimation and error correction over block
fading channels,” in Proc. IEEE Int. Symp. Personel, Indoor Mobile
Radio Commun., Tokyo, Japan, Sep. 13–16, 2009, pp. 1272–1276.

Authorized licensed use limited to: Hsuan Yin Lin. Downloaded on May 01,2020 at 07:53:17 UTC from IEEE Xplore.  Restrictions apply. 



7378 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013

[9] M. Dohler, R. W. Heath Jr., A. Lozano, C. B. Papadias, and R. A.
Valenzuela, “Is the PHY layer dead?,” IEEE Commun. Mag., vol. 49,
no. 4, pp. 159–165, Apr. 2011.

[10] J. N. Laneman, “On the distribution of mutual information,” in Proc.
Inf. Theory Appl. Workshop, Univ. California, San Diego, CA, USA,
Feb. 6–10, 2006.

[11] D. Buckingham and M. C. Valenti, “The information-outage proba-
bility of finite-length codes over AWGN channels,” in Proc. Annu.
Conf. Inf. Sci. Syst., Princeton, NJ, USA, Mar. 19–21, 2008, pp.
390–395.

[12] S. Lin and D. J. Costello Jr., Error Control Coding, 2nd ed. Upper
Saddle River, NJ, USA: Prentice-Hall, 2004.

[13] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherland: North-Holland, 1977.

[14] P.-N. Chen, H.-Y. Lin, and S. M. Moser, “Weak flip codes and appli-
cations to optimal code design on the binary erasure channel,” in Proc.
50th Allerton Conf. Commun., Control Comput., Monticello, IL, USA,
Oct. 1–5, 2012, pp. 160–167.

[15] C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lower bounds
to error probability for coding on discrete memoryless channels,” Inf.
Control, vol. 10, pt. II, pp. 522–552, May 1967.

[16] P.-N. Chen, H.-Y. Lin, and S. M. Moser, “Equidistant codes meeting
the Plotkin bound are not optimal on the binary symmetric channel,”
in Proc. IEEE Int. Symp. Inf. Theory, Istanbul, Turkey, Jul. 7–13, 2013,
pp. 3015–3019.

[17] S. J. MacMullan and O. M. Collins, “A comparison of known codes,
random codes, and the best codes,” IEEE Trans. Inf. Theory, vol. 44,
no. 7, pp. 3009–3022, Oct. 1998.

[18] Y. Polyanskiy, “Saddle point in the minimax converse for channel
coding,” IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 2576–2595, May
2013.

Po-Ning Chen (S’93–M’95–SM’01) was born in Taipei, R.O.C., in 1963. He
received the B.S. and M.S. degrees in electrical engineering from the National
Tsing-Hua University, Taiwan, in 1985 and 1987, respectively, and the Ph.D.
degree in electrical engineering from University of Maryland, College Park, in
1994. From 1985 to 1987, he was with Image Processing Laboratory in National
Tsing-Hua University, where he worked on the recognition of Chinese charac-
ters. During 1989, he was with Star Tech. Inc., where he focused on the de-
velopment of finger-print recognition systems. After the reception of the Ph.D.
degree in 1994, he joined Wan Ta Technology Inc. as a vice general manager,
conducting several projects on Point-of-Sale systems. In 1995, he became a re-
search staff in Advanced Technology Center, Computer and Communication
Laboratory, Industrial Technology Research Institute in Taiwan, where he led a
project on Java-based Network Managements.
Since 1996, he has been an Associate Professor in the Department of Commu-

nications Engineering at the National Chiao-Tung University, Taiwan, and was
promoted to a full professor in 2001. He was elected to be the Chair of the IEEE
Communications Society Taipei Chapter in 2006 and 2007, during which the
IEEE ComSoc Taipei Chapter won the 2007 IEEE ComSoc Chapter Achieve-
ment Awards (CAA) and 2007 IEEE ComSoc Chapter of the Year (CoY). He
has served as the chairman of the Department of Communications Engineering,
National Chiao-Tung University, during 2007–2009. Dr. Chen received the an-
nual Research Awards from the National Science Council, Taiwan, five years
in a row since 1996. He then received the 2000 Young Scholar Paper Award
from Academia Sinica, Taiwan. His Experimental Handouts for the course of
Communication Networks Laboratory have been awarded as the Annual Best
Teaching Materials for Communications Education by the Ministry of Educa-
tion, Taiwan, in 1998. He has been selected as the Outstanding Tutor Teacher
of the National Chiao-Tung University in 2002. He was also the recipient of the
Distinguished Teaching Award from the College of Electrical and Computer
Engineering, National Chiao-Tung University, Taiwan, in 2003. His research
interests generally lie in information and coding theory, large deviation theory,
distributed detection and sensor networks.

Hsuan-Yin Lin (S’09) was born in Taiwan. He received the B.S. major degree
in electrical engineering and minor degree in mathematics from the National
Tsing-HuaUniversity, Taiwan, in 2007. After one year study for aM.S. degree in
the Institute of Communications Engineering, National Chiao Tung University,
Hsinchu, Taiwan, he jumped directly into the study of a Ph.D. degree in the
same department, in 2008. He is currently finishing his last Ph.D. year working
jointly with advisor Prof. Stefan M. Moser and co-advisor Prof. Po-Ning Chen.
During January to October 2012, Mr. Lin was a visit scholar in Information

Theory and Coding (ITC) Group at the Department of Information and Com-
munication Technologies, Universitat Pompeu Fabra, Barcelona, Spain. His re-
search interests lie in information theory, finite blocklength information theory,
and optimal coding for finite blocklength.

Stefan M. Moser (S’01–M’05–SM’10) was born in Switzerland. He received
the diploma (M.Sc.) in electrical engineering (with distinction) in 1999, the
M.Sc. degree in industrial management (M.B.A.) in 2003, and the Ph.D. de-
gree (Dr. sc. techn.) in the field of information theory in 2004, all from ETH
Zurich, Switzerland.
From 1999 to 2003, he was a Research and Teaching Assistant, and from

2004 to 2005, he was a Senior Research Assistant with the Signal and Informa-
tion Processing Laboratory, ETH Zurich. Since 2005, he has been an Assistant
Professor, since 2008 an Associate Professor, and since 2012 a Professor with
the Department of Electrical and Computer Engineering, National Chiao Tung
University (NCTU), Hsinchu, Taiwan. His research interests are in information
theory and digital communications.
Dr.Moser is recipient of theWuTa-YouMemorial Award by the National Sci-

ence Council of Taiwan in 2012, and the Best Paper Award for Young Scholars
by the IEEE Communications Society Taipei and Tainan Chapters and the IEEE
Information Theory Society Taipei Chapter in 2009. Further he received various
awards fromNational Chiao TungUniversity, e.g., awards for excellent teaching
in 2007 and 2013, and he was presented with the Willi Studer Award of ETH
and the ETH Medal both in 1999, and with the Sandoz (Novartis) Basler Matu-
randenpreis in 1993.

Authorized licensed use limited to: Hsuan Yin Lin. Downloaded on May 01,2020 at 07:53:17 UTC from IEEE Xplore.  Restrictions apply. 


