
Weak Flip Codes and Applications to Optimal

Code Design on the Binary Erasure Channel

Po-Ning Chen, Hsuan-Yin Lin, and Stefan M. Moser

Department of Electrical and Computer Engineering

National Chiao Tung University (NCTU)

Hsinchu, Taiwan

Email: qponing@mail.nctu.edu.tw, {lin.hsuanyin, stefan.moser}@ieee.org

Abstract—A new family of nonlinear codes, called weak flip
codes, is presented and is shown to contain many beautiful
properties. In particular, the subfamily of fair weak flip codes
can be seen as a generalization of linear codes. Different from
linear codes that only exist for a number of codewords M

being an integer-power of 2, the fair weak flip code can be
defined for an arbitrary M. It is then noted that the fair
weak flip codes are related to binary nonlinear Hadamard
codes: both code families maximize the minimum Hamming
distance and meet the Plotkin bound. However, while the binary
nonlinear Hadamard codes have only been shown to possess
good Hamming-distance properties, the fair weak flip codes
are proven to be globally optimal (in the sense of minimizing
the error probability) among all linear or nonlinear codes
for the binary erasure channel (BEC) for many values of the
blocklength n and for M ≤ 6. For M > 6, similar optimality
results are conjectured.

The results in this paper are founded on a new powerful tool
for the analysis and generation of block codes: the column-wise
approach to the codebook matrix.

I. INTRODUCTION

In traditional coding theory, it is the goal to find good

codes that operate close to the ultimate limit of the channel

capacity as introduced by Shannon [1]. Implicitly, by the

definition of capacity, such codes have large blocklength.

Moreover, due to the potential simplifications and because

for large blocklength such codes do behave very well,

conventional coding theory often restricts itself to linear

codes. It is also quite common to use the minimum Hamming

distance and the weight enumerating function (WEF) as a

design and quality criterion [2]. This is motivated by the

equivalence of Hamming weight and Hamming distance for

linear codes, and by the union bound that converts the global

error probability into pairwise error probabilities.

In this work we would like to break away from these

traditional simplifications and instead focus on an optimal1

design of codes for finite blocklength. Since for very short

blocklength, it is not realistic to transmit large quantities of

information, we start by looking at codes with only a few

codewords, so called ultra-small block-codes. Such codes

have many practical applications, e.g., in the situation of

establishing an initial connection in a wireless link. There

1With optimal we always mean minimum error probability.

the amount of information that needs to be transmitted during

the setup of the link is limited to usually only a couple of

bits, however, these bits need to be transmitted in very short

time (e.g., blocklength in the range of n = 20 to n = 30)

with the highest possible reliability [3].

While conventional coding theory in the sense of Shannon

often focuses on stating important fundamental insights and

properties like, e.g., what rates are possible to achieve and

what rates are not achievable, we specifically turn our atten-

tion to the concrete code design, i.e., we are interested in

actually finding a globally optimum code for a certain given

channel and a given fixed blocklength.

In this paper, we introduce a new class of codes, called fair

weak flip codes, that have many beautiful properties similar

to those of linear codes. However, while linear codes are

very much limited since they only can exist if the number of

codewords M happens to be an integer-power of 2, our class

of codes exists for arbitrary M. We will investigate these

“quasi-linear” codes and show that they satisfy the Plotkin

bound.

Fair weak flip codes are related to a class of binary non-

linear codes that are constructed with the help of Hadamard

matrices and Levenshtein’s theorem [4, Ch. 2]. These binary

nonlinear Hadamard codes also meet the Plotkin bound. As

a matter of fact, if for the parameters (M, n) of a given

fair weak flip code there exists a Hadamard code, then these

two codes are equivalent.2 In this sense we can consider the

fair weak flip codes to be a subclass of Hadamard codes.

However, note that there is no guarantee that for every choice

of parameters (M, n) for which fair weak flip codes exist,

there also exists a corresponding Hadamard code.

Moreover, also note that while Levenshtein’s method is

only concerned with an optimal Hamming distance structure,

we will show that fair weak flip codes are globally optimal

(i.e., they are the best with respect to error probability and not

only pairwise Hamming distance, and they are best among

all codes, linear or nonlinear!) for the binary erasure channel

(BEC). We prove this optimality in the case of the number

of codewords M ≤ 6 and conjecture it for M > 6.

We also define a class of codes called weak flip codes that

2For a precise definition of equivalent see Remark 4.

160

Fiftieth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
October 1 - 5, 2012

978-1-4673-4539-2/12/$31.00 ©2012 IEEE



contains as special cases the class of fair weak flip codes, the

class of binary nonlinear Hadamard codes, and the class of

linear codes. We then specify some weak flip codes that are

optimal for the BEC for M ≤ 4 and for any finite blocklength

n, or for M = 5 and for blocklength n satisfying n mod 10 ∈
{0, 3, 5, 7, 9}, or for M = 6 and for even blocklength n.

This work is a continuation of our previous work [5],

[6], where we have studied ultra-small block-codes for the

situation of general binary-input binary-output channels and

where we have derived the optimal code design for the two

special cases of the Z-channel (ZC) and the binary symmetric

channel (BSC). We will also briefly compare our findings

here with these previous results.

The foundations of our insights lie in a new very powerful

way of creating and analyzing both linear and nonlinear

block-codes. As is quite common, we use the codebook

matrix containing the codewords in its rows to describe our

codes. However, for our code construction and performance

analysis, we look at this codebook matrix not row-wise, but

column-wise. All our proofs and also our definition of the new

“quasi-linear” codes are fully based on this new approach to

a code. (This is another fundamental difference between our

results and the binary nonlinear Hadamard codes that are

constructed based on Hadamard matrices and Levenshtein’s

theorem [4].)

The remainder of this paper is structured as follows.

After some comments about our notation, we will introduce

the channel model and review some common definitions in

Sections II and III. In Section IV we introduce the new family

of weak flip codes, that also contains the subfamily of fair

weak flip codes. The main results are then summarized and

discussed in Section V.

As it is common in coding theory, vectors (denoted by

boldface Roman letters, e.g., x) are row-vectors. However,

for simplicity of notation and to avoid a large number of

transpose-signs, we slightly misuse this notational convention

for one special case: any vector c is a column-vector. It

should be always clear from the context because these vectors

are used to build codebook matrices and are therefore also

conceptually quite different from the transmitted codeword

x or the received sequence y. Moreover, we use a bar x̄ to

denote the flipped version of x, i.e., x̄ , x ⊕ 1 (where ⊕
denotes the componentwise XOR operation).

II. CHANNEL MODEL AND CODING SCHEMES

We consider the binary erasure channel (BEC) given in

Figure 1. The BEC is a discrete memoryless channel (DMC)

with binary input X and ternary output Y and with a

conditional channel probability

PY |X(y|x) =

{

1− ǫ if y = x, x ∈ {0, 1},

ǫ if y = 2, x ∈ {0, 1}.
(1)

Here 0 ≤ ǫ ≤ 1 is called the erasure probability.

We next quickly review a few common definitions.

0

0

1

1

2

ǫ

ǫ

1− ǫ

1− ǫ

Figure 1. The binary erasure channel (BEC) with erasure probability ǫ.
The channel output 2 corresponds to an erasure.

Definition 1: An (M, n) coding scheme for a DMC (such

as the BEC) consists of a codebook C (M,n) with M code-

words of length n, an encoder that maps every message

m into its corresponding codeword xm, and a decoder that

makes a decoding decision g(y) ∈ {1, . . . ,M} for every

received binary n-vector y.

We will always assume that the M possible messages are

equally likely and that the decoder is a maximum likelihood

(ML) decoder:3

g(y) , argmax
1≤m≤M

PY|X(y|xm). (2)

Hence, we are going to be lazy and directly concentrate

on the set of codewords C (M,n), called (M, n) codebook

or usually simply (M, n) code. Sometimes we follow the

custom of traditional coding theory and use three parameters:

(M, n, d) code, where the third parameter d denotes the

minimum Hamming distance, i.e., the minimum number of

components in which any two codewords differ.

Definition 2: Given that message m has been sent, let λ
(n)
m

be the probability of a decoding error of an (M, n) code with

blocklength n:

λ(n)m , Pr[g(Y) 6= m | X = xm] . (3)

The average error probability P
(n)
e of an (M, n) code is

defined as

P (n)
e = P (n)

e

(
C

(M,n)
)
,

1

M

M∑

m=1

λ(n)m . (4)

Sometimes it will be more convenient to focus on the prob-

ability of not making any error, denoted success probability

ψ
(n)
m :

ψ(n)
m , Pr[g(Y) = m | X = xm] . (5)

The definition of the average success probability4 P
(n)
c

follows accordingly.

3Note that the ML decoder is optimal in the sense that for a given code
and DMC and under the assumption of equally likely messages, it minimizes
the average error probability as defined in (4).

4The subscript “c” stands for “correct.”
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Definition 3: For a given code C (M,n), we define the

decoding region Dm corresponding to the mth codeword xm

as follows:

Dm , {y : g(y) = m}. (6)

Usually, the codebook C (M,n) is written as an M × n

codebook matrix with the M rows corresponding to the M

codewords:

C
(M,n) =






x1

...

xM




 =




c1 c2 · · · cn




 . (7)

However, it turns out to be much more convenient to consider

the codebook column-wise rather than row-wise! We denote

the column-vectors of the codebook by c.

Remark 4: Since we assume equally likely messages, any

permutation of rows only changes the assignment of code-

words to messages and has therefore no impact on the

performance. We thus consider two codes with permuted

rows as being equal (this agrees with the thinking of a

code being a set of codewords, where the ordering of the

codewords is irrelevant). Furthermore, since we only consider

memoryless channels, any permutation of the columns of

C (M,n) will lead to another code that will result in the same

error probability. We say that such two codes are equivalent.

We would like to emphasize that two codes being equivalent

is not the same as two codes being equal. However, as we are

mainly interested in the performance of a code, we usually

treat two equivalent codes as being the same.

Due to the symmetry of the BEC, we have an additional

equivalence in the codebook design.

Lemma 5: Consider an arbitrary code C (M,n) to be used

on the BEC and consider an arbitrary M-vector c. Now

construct a new length-(n+1) code C (M,n+1) by appending

c to the codebook matrix of C (M,n) and a new length-(n+1)

code C
(M,n+1)

by appending the flipped vector c̄ = c ⊕ 1

to the codebook matrix of C (M,n). Then the performance of

these two new codes is identical:

P (n+1)
e

(
C

(M,n+1)
)
= P (n+1)

e

(

C
(M,n+1)

)

. (8)

We remind the reader that our ultimate goal is to find the

structure of an optimal code C (M,n)∗ that satisfies

P (n)
e

(
C

(M,n)∗
)
≤ P (n)

e

(
C

(M,n)
)

(9)

for any code C (M,n).

III. PAIRWISE HAMMING DISTANCE

The minimum Hamming distance is a well-known and

often used quality criterion of a code. Unfortunately, a design

based on the minimum Hamming distance can be strictly

suboptimal even for a very symmetric channel like the BSC

and even for linear codes, although the error probability per-

formance of a BSC is completely specified by the Hamming

distances between codewords and received vectors [6].

We therefore define a slightly more general and more

concise description of a code: the pairwise Hamming distance

vector.

Definition 6: Given a code C (M,n) with codewords xm,

we define the pairwise Hamming distance vector d(M,n) of

length
(M−1)M

2 as

d(M,n) ,
(

d
(n)
12 , d

(n)
13 , d

(n)
23 , d

(n)
14 , d

(n)
24 , d

(n)
34 , . . . ,

d
(n)
1M, d

(n)
2M, . . . , d

(n)
(M−1)M

)

(10)

with d
(n)
mm′ , dH(xm,xm′), 1 ≤ m < m′ ≤ M, where

dH(·, ·) is the well known Hamming distance function. The

minimum Hamming distance dmin is defined as the minimum

component of the pairwise Hamming distance vector d(M,n).

IV. WEAK FLIP CODES AND HADAMARD CODES

We next introduce some special families of binary codes.

We start with a family of codes with two codewords.

Definition 7: The flip code of type t for t ∈
{
0, 1, . . . ,

⌊
n
2

⌋}
is a code with M = 2 codewords defined

by the following codebook matrix C
(2,n)
t :

t columns
︷ ︸︸ ︷

C
(2,n)
t ,

(
x

x̄

)

=

(
0 · · · 0 1 · · · 1
1 · · · 1 0 · · · 0

)

. (11)

Defining the column vectors
{

c
(2)
1 ,

(
0
1

)

, c
(2)
2 ,

(
1
0

)}

, (12)

we see that a flip code of type t is given by a codebook

matrix that consists of n − t columns c
(2)
1 and t columns

c
(2)
2 .

Note that while the flip code of type 0 corresponds to a

repetition code, the general flip code of type t with t > 0
neither is a repetition code nor is it even linear.

We have shown in [6] that for any blocklength n and for a

correct choice5 of t, the flip codes are optimal on any binary-

input binary-output channel for arbitrary channel parameters.

In particular, they are optimal for the BSC and the ZC [6].

The columns given by the set (12) are called candidate

columns. We see that they are flipped versions of each other,

therefore also the name of the code.

To be able to generalize the definition of flip codes to

M > 2, we give the following definition.

Definition 8: Given an M > 2, a length-M candidate

column c is called a weak flip column if its first component

is 0 and its Hamming weight equals to
⌊
M

2

⌋
or

⌈
M

2

⌉
. The

collection of all possible weak flip columns is called weak

flip candidate columns set and is denoted by C(M).

We see that a weak flip column contains an almost equal

number of zeros and ones. The restriction of the first com-

ponent to be zero is based on the insight of Lemma 5. For

5We would like to emphasize that the optimal choice of t for many binary
channels is not 0, i.e., the linear repetition code is not optimal!
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the remainder of this paper, we introduce the shorthand

ℓ ,

⌈
M

2

⌉

. (13)

Lemma 9: The cardinality of a weak flip candidate

columns set is
∣
∣C(M)

∣
∣ =

(
2ℓ− 1

ℓ

)

. (14)

We are now ready to generalize Definition 7.

Definition 10: A weak flip code is a codebook that is

constructed only by weak flip columns.

Concretely, for M = 3 or M = 4, we have the following.

Definition 11: The weak flip code of type (t2, t3) for M =
3 or M = 4 codewords is defined by a codebook matrix

C
(M,n)
t2,t3

that consists of t1 , n − t2 − t3 columns c
(M)
1 , t2

columns c
(M)
2 , and t3 columns c

(M)
3 , where






c
(3)
1 ,





0
0
1



 , c
(3)
2 ,





0
1
0



 , c
(3)
3 ,





0
1
1










(15)

or






c
(4)
1 ,







0
0
1
1






, c

(4)
2 ,







0
1
0
1






, c

(4)
3 ,







0
1
1
0













, (16)

respectively. We often describe a weak flip code of type

(t2, t3) by the code parameters [t1, t2, t3].

Lemma 12: The pairwise Hamming distance vector of a

weak flip code of type (t2, t3) can be computed as follows:

d(3,n) = (t2 + t3, t1 + t3, t1 + t2),

d(4,n) = (t2 + t3, t1 + t3, t1 + t2, t1 + t2, t1 + t3, t2 + t3).

A similar definition can be given also for larger M,

however, one needs to be aware that the number of weak flip

candidate columns is increasing fast. For M = 5 or M = 6
we have ten weak flip candidate columns:






c
(5)
1 ,









0
0
0
1
1









, c
(5)
2 ,









0
0
1
0
1









, c
(5)
3 ,









0
0
1
1
0









,

c
(5)
4 ,









0
0
1
1
1









, c
(5)
5 ,









0
1
0
0
1









, c
(5)
6 ,









0
1
0
1
0









, c
(5)
7 ,









0
1
0
1
1









,

c
(5)
8 ,









0
1
1
0
0









, c
(5)
9 ,









0
1
1
0
1









, c
(5)
10 ,









0
1
1
1
0















, (17)

and






c
(6)
1 ,











0
0
0
1
1
1











, c
(6)
2 ,











0
0
1
0
1
1











, c
(6)
3 ,











0
0
1
1
0
1











,

c
(6)
4 ,











0
0
1
1
1
0











, c
(6)
5 ,











0
1
0
0
1
1











, c
(6)
6 ,











0
1
0
1
0
1











, c
(6)
7 ,











0
1
0
1
1
0











,

c
(6)
8 ,











0
1
1
0
0
1











, c
(6)
9 ,











0
1
1
0
1
0











, c
(6)
10 ,











0
1
1
1
0
0

















, (18)

respectively.

We will next introduce a special subclass of weak flip

codes that, as we will see in Section V, possess particularly

beautiful properties.

Definition 13: A weak flip code is called fair if it is

constructed by an equal number of all possible weak flip

candidate columns in C(M). Note that by definition the

blocklength of a fair weak flip code is always a multiple

of
(
2ℓ−1

ℓ

)
, ℓ ≥ 2.

Fair weak flip codes have been used by Shannon et al.

[7] for the derivation of error exponents, although the codes

were not named at that time. Note that in their derivation,

the error exponents are defined when blocklength n goes to

infinity, but in this work we consider finite n.

Related to the weak flip codes and the fair weak flip codes

are the families of Hadamard codes [4, Ch. 2].

Definition 14: For an even integer n, a (normalized) Ha-

damard matrix Hn of order n is an n×n matrix with entries

+1 and −1 and with the first row and column being all +1,

such that

HnH
T

n = nIn, (19)

if such a matrix exists. Here In is the identity matrix of size

n. If the entries +1 are replaced by 0 and the entries −1 by

1, Hn is changed into the binary Hadamard matrix An.

Note that a necessary (but not sufficient) condition for the

existence of Hn (and the corresponding An) is that n is 1, 2,

or a multiple of 4 [4, Ch. 2].

Definition 15: The binary Hadamard matrix An gives rise

to three families of Hadamard codes:

1) The
(
n, n− 1, n2

)
Hadamard code H1,n consists of

the rows of An with the first column deleted. The code-

words in H1,n that begin with 0 form the
(
n
2 , n− 2, n2

)

Hadamard code H ′
1,n if the initial zero is deleted.
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2) The
(
2n, n− 1, n2 − 1

)
Hadamard code H2,n consists

of H1,n together with the complements of all its

codewords.

3) The
(
2n, n, n2

)
Hadamard code H3,n consists of the

rows of An and their complements.

Further Hadamard codes can be created by an arbitrary com-

binations of the codebook matrices of different Hadamard

codes.

Example 16: Consider an (8, 7, 4) H1,8 code:














0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 0 1 1
0 1 1 1 1 0 0
1 0 0 1 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 1 0 0 0 1















(20)

From this code, an (8, 35, 20) Hadamard code can be con-

structed by simply concatenating H1,8 five times. ♦
Note that since the rows of Hn are orthogonal, any two

rows of An agree in 1
2n places and differ in 1

2n places, i.e.,

they have a Hamming distance n
2 . Moreover, by definition

the first row of a binary Hadamard matrix is the all-zero

row. Hence, we see that all Hadamard codes are weak flip

codes, i.e., the family of weak flip codes is a superset of

Hadamard codes.

On the other hand, fair weak flip codes can be seen as

a “subset” of Hadamard codes because for all parameters

(M, n), for which fair weak flip codes and also Hadamard

codes exist, a Hadamard code can be constructed that is also

a fair weak flip code. The problem with this statement lies

in the fact that the Hadamard codes rely on the existence of

Hadamard matrices, which in general is not guaranteed. So it

is very difficult to predict whether for a given pair (M, n), a

Hadamard code will exist or not. This is in stark contrast to

weak flip codes (which exist for all M and n) and fair weak

flip codes (which exist for all M and all n being a multiple

of
(
2ℓ−1

ℓ

)
).

We also remark that a Hadamard code of parameters

(M, n), for which fair weak flip codes exist, is not necessarily

equivalent to a fair weak flip code.

Example 17: We continue with Example 16 and note that

the (8, 35, 20) Hadamard code that is constructed by five

repetitions of the matrix given in (20) is actually not a fair

weak flip code since we have not used all possible weak

flip candidate columns. However, it is possible to find five

(8, 7, 4) Hadamard codes that combine to a (8, 35, 20) fair

weak flip code. ♦
Note that two Hadamard matrices can be equivalent if

one can be obtained from the other by permuting rows and

columns and multiplying rows and columns by −1. In other

words, Hadamard codes can actually be constructed from

weak candidate columns. This also follows directly from the

already mentioned fact that Hadamard codes are weak flip

codes.

V. MAIN RESULTS

A. Characteristics of Weak Flip Codes

In conventional coding theory, most results are restricted

to so called linear codes that possess very powerful algebraic

properties. For the following definitions see, e.g., [2], [4].

Definition 18: Let M = 2k, where k ∈ N. The binary

code C
(M,n)
lin is linear if its codewords span a k-dimensional

subspace of {0, 1}n.

One of the most important property of a linear code is as

follows.

Proposition 19: Let Clin be linear and let xm ∈ Clin be

given. Then the code that we obtain by adding xm to each

codeword of Clin is equal to Clin.

Another property concerns the column weights.

Proposition 20: If an (M, n) binary code is linear, then

each column of its codebook matrix has Hamming weight
M

2 , i.e., the code is a weak flip code.

Hence, linear codes are weak flip codes. Note, however,

that linear codes only exist if M = 2k, where k ∈ N, while

weak flip codes are defined for any M. Also note that the

converse of Proposition 20 does not hold, i.e., even if M = 2k

for some k ∈ N, a weak flip code C (M,n) is not necessarily

linear. It is not even the case that a fair weak flip code for

M = 2k is necessarily linear!

Now the question arises as to which of the many powerful

algebraic properties of linear codes are retained in weak flip

codes.

Theorem 21: Consider a weak flip code C (M,n)

and fix some codeword xm ∈ C (M,n). If we add

this codeword to all codewords in C (M,n), then the

resulting code C̃ (M,n) ,
{
xm ⊕ x

∣
∣ ∀x ∈ C (M,n)

}
is

still a weak flip code, however, it is not necessarily the

same one.

Theorem 21 is a beautiful property of weak flip codes;

however, it still represents a considerable weakening of the

powerful property of linear codes given in Proposition 19.

This can be fixed by considering the subfamily of fair weak

flip codes.

Theorem 22 (Quasi-Linear Codes): Let C be a fair

weak flip code and let xm ∈ C be given. Then the

code C̃ =
{
xm ⊕ x

∣
∣ ∀x ∈ C (M,n)

}
is equivalent to

C .

If we recall Proposition 20 and the discussion after it, we

realize that the definition of the quasi-linear fair weak flip

code is a considerable enlargement of the set of codes having

the property given in Theorem 22.

The following corollary is a direct consequence of Theo-

rem 22.

Corollary 23: The Hamming weights of each codeword

of a fair weak flip code are all identical except the all-zero
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codeword x1. In other words, if we let wH(·) be the Hamming

weight function, then

wH(x2) = wH(x3) = · · · = wH(xM). (21)

Before we next investigate the minimum Hamming dis-

tance for the quasi-linear fair weak flip codes, we quickly

recall an important bound that holds for any
(
M, n, d

)
code.

Lemma 24 (Plotkin Bound [4]): The minimum distance

of an (M, n) binary code C (M,n) always satisfies

dmin

(
C

(M,n)
)
≤







n·M
2

M−1 M even,

n·M+1

2

M
M odd.

(22)

It can be seen that a necessary condition for a codebook

to meet the Plotkin-bound is that the codebook is composed

by weak flip candidate columns. Furthermore, Levenshtein

[4, Ch. 2] proved that the Plotkin bound can be achieved,

provided that Hadamard matrices exist.

Theorem 25: Fix some M and a blocklength n

with n mod
(
2ℓ−1

ℓ

)
= 0. Then a fair weak flip code

C (M,n) achieves the largest minimum Hamming dis-

tance among all codes of given blocklength and satisfies

dmin

(
C

(M,n)
)
=

n · ℓ

2ℓ− 1
. (23)

B. Optimal Codes on BEC

The definitions of the flip, the weak flip, and the fair weak

flip codes are interesting not only due to their generalization

of the concept of linear codes, but also because we can show

that they are optimal for the BEC for many values of the

blocklength n.

Theorem 26: For a BEC and for any n ≥ 1, an

optimal codebook with M = 2 codewords is the flip

code of type t for any t ∈
{
0, 1, . . . ,

⌊
n
2

⌋}
.

Theorem 27: For a BEC and for any n ≥ 2, an

optimal codebook with M = 3 or M = 4 codewords

is the weak flip code of type (t∗2, t
∗
3), where

t∗2 ,
⌊n

3

⌋

, t∗3 ,

⌊
n+ 1

3

⌋

. (24)

This optimal codebook can be constructed recursively

in the blocklength n. We start with an optimal code-

book for n = 2:

C
(M,2)∗
BEC =

(

c
(M)
1 , c

(M)
3

)

. (25)

Then, from the optimal code C
(M,n−1)∗
BEC of blocklength

n − 1, we can recursively construct the optimal code-

book of blocklength n by appending






c
(M)
2 if n mod 3 = 0,

c
(M)
1 if n mod 3 = 1,

c
(M)
3 if n mod 3 = 2.

(26)

This theorem suggests that for a given fixed code size M,

a sequence of good codes can be generated by appending

proper columns to a code of smaller blocklength. The proof

is based on this recursive generation and follows similar ideas

as in [6, App. C], i.e., it is based on a column-wise analysis

of the codebook matrix and on a mathematical induction

on n. For a given DMC and a code of blocklength n, we

ask the question what is the optimal improvement (i.e., the

maximum reduction of error probability) when increasing the

blocklength n to n+γ, where γ = 1 when M = 3 or 4 (and

may be larger than 1 when M ≥ 5). The answer to this

question then leads to the recursive construction of (26).

Note that the idea of designing an optimal code recursively

promises to be a very powerful approach. Unfortunately, for

larger values of M, we might need a recursion from n to

n + γ with a step-size γ > 1 that might be a function of

blocklength n. However, based on our definition of fair weak

flip codes and on Theorem 29 below, we conjecture that the

necessary step-size satisfies γ ≤
(
2ℓ−1

ℓ

)
.

We have successfully applied this recursive approach also

to the cases of M = 5 and M = 6.

Theorem 28: For a BEC and for any n ≥ 3, an

optimal codebook with M = 5 codewords can be

constructed recursively in the blocklength n. We start

with an optimal codebook for n = 3:

C
(M,3)∗
BEC =

(

c
(M)
1 , c

(M)
2 , c

(M)
5

)

(27)

and recursively construct the optimal codebook for n ≥

5 by using C
(M,n−γ)∗
BEC , γ ∈ {1, 2, 3}, and appending







(

c
(M)
1 , c

(M)
2 , c

(M)
5

)

if n mod 10 = 3,
(

c
(M)
3 , c

(M)
6

)

if n mod 10 = 5,
(

c
(M)
9 , c

(M)
10

)

if n mod 10 = 7,
(

c
(M)
4 , c

(M)
7

)

if n mod 10 = 9,

c
(M)
8 if n mod 10 = 0.

(28)

For M = 6 codewords, an optimal codebook can be

constructed recursively in the blocklength n by starting

with an optimal codebook for n = 4:

C
(M,3)∗
BEC =

(

c
(M)
1 , c

(M)
2 , c

(M)
6 , c

(M)
8

)

. (29)
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Then we recursively construct the optimal codebook

for n ≥ 6 by using C
(M,n−2)∗
BEC and appending







(

c
(M)
1 , c

(M)
2

)

if n mod 10 = 2,
(

c
(M)
6 , c

(M)
8

)

if n mod 10 = 4,
(

(c
(M)
3 , c

(M)
5

)

if n mod 10 = 6,
(

c
(M)
4 , c

(M)
7

)

if n mod 10 = 8,
(

c
(M)
9 , c

(M)
10

)

if n mod 10 = 0.

(30)

An interesting special case of Theorem 28 is as follows.

Theorem 29: For a BEC and for any n being a

multiple of 10, an optimal codebook with M = 5 or

M = 6 codewords is the corresponding fair weak flip

code.

Note that the restriction on n comes from the restriction

that fair weak flip codes are only defined for n with n mod
(
2ℓ−1

ℓ

)
= n mod 10 = 0. Even though Theorem 29 actually

follows as special case from Theorem 28, it can be proven

directly and more elegantly using the properties of fair weak

flip codes derived in Section V-A.

How about the optimal codes on BEC for higher number

of codewords M? We strongly believe that Theorem 29 can

be generalized to arbitrary M.

Conjecture 30: For a BEC and for an arbitrary M,

the optimal code for a blocklength n that satisfies

n mod
(
2ℓ−1

ℓ

)
= 0 is the corresponding fair weak flip

code.

C. Quick Comparison between BSC and BEC

In [6] it has been shown that optimal codes for M = 3 or

M = 4 are weak flip codes with code parameters:

[t∗1, t
∗
2, t

∗
3] =







[k + 1, k − 1, k] if n mod 3 = 0,

[k + 1, k, k] if n mod 3 = 1,

[k + 1, k, k + 1] if n mod 3 = 2,

(31)

where we use

k ,
⌊n

3

⌋

. (32)

The corresponding pairwise Hamming distance vectors (see

Lemma 12) are







(2k − 1, 2k, 2k + 1) if n mod 3 = 0,

(2k, 2k + 1, 2k + 1) if n mod 3 = 1,

(2k + 1, 2k + 2, 2k + 1) if n mod 3 = 2.

(33)

If we compare this to Theorem 27:

[t∗1, t
∗
2, t

∗
3] =







[k, k, k] if n mod 3 = 0,

[k + 1, k, k] if n mod 3 = 1,

[k + 1, k, k + 1] if n mod 3 = 2

(34)

with corresponding pairwise Hamming distance vectors






(2k, 2k, 2k) if n mod 3 = 0,

(2k, 2k + 1, 2k + 1) if n mod 3 = 1,

(2k + 1, 2k + 2, 2k + 1) if n mod 3 = 2,

(35)

we can conclude the following.

Corollary 31: Apart from n mod 3 = 0, the optimal codes

for a BSC are identical to the optimal codes for a BEC for

M = 3 or M = 4 codewords.

It is interesting to note that for n mod 3 = 0 the optimal

codes for the BEC are fair and therefore maximize the

minimum Hamming distance, while this is not the case for

the (very symmetric!) BSC. However, note that the converse

is not true: if a code maximizes the minimum Hamming

distance, then it is not necessarily an optimal code for the

BEC! So, in particular, it is not clear if binary nonlinear

Hadamard codes are optimal.

VI. CONCLUSION

In this paper, we have introduced the weak flip codes,

a new class of codes containing both the class of binary

nonlinear Hadamard codes and the class of linear codes as

special cases. We have shown that weak flip codes have many

desirable properties; in particular, we have been able to prove

that besides retaining many of the good Hamming distance

properties of Hadamard codes, they are actually optimal

with respect to the minimum error probability over a binary

erasure channel (BEC) for certain numbers of codewords M

and many finite blocklengths n.

We have also introduced the subclass of fair weak flip

codes that can be seen as a generalization of linear codes

to arbitrary numbers of codewords M. We have shown that

fair weak flip codes are optimal with respect to the error

probability for the BEC for M ≤ 6 and a blocklength that

depends on M, and we have conjectured that this result

continues to hold also for M > 6.

Note that while it has been known for quite some time

that binary nonlinear Hadamard codes have good Hamming

distance properties [4], so far not much has been known about

their behavior with respect to error probability for finite n.

Furthermore, also note that while fair weak flip codes have

been used before (although without being named) in the

derivation of results related to error probability [7], so far

it has only been shown that the optimal error exponents can

be achieved by fair weak flip codes, but they have not been

proven to be actually optimal in error probability among all

possible linear or nonlinear codes for finite blocklength.

In conclusion, we try to build a bridge between coding

theory, which usually is concerned with the design of codes

with good Hamming distance properties (like, e.g., the binary
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nonlinear Hadamard codes), and information theory, which

deals with error probability and the existence of codes that

have good or optimal error probability behavior.
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