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Abstract—Block-codes with very short blocklength over the
most general binary channel, the binary asymmetric channel
(BAC), are investigated. It is shown that for only two possible
messages, flip codes are optimal, however, depending on the
blocklength and the channel parameters, not necessarily the
linear flip code. Further it is shown that the optimal decoding
rule is a threshold rule. Finally some fundamental dependencies
of the best code on the channel are given.

I. INTRODUCTION

Shannon proved in his ground-breaking work [1] that it is

possible to find an information transmission scheme that can

transmit messages at arbitrarily small error probability as long

as the transmission rate in bits per channel use is below the

so-called capacity of the channel. However, he did not provide

a way on how to find such schemes, in particular he did not

tell us much about the design of codes apart from the fact that

good codes need to have large blocklength.

For many practical applications exactly this latter constraint

is rather unfortunate as often we cannot tolerate too much

delay (e.g., inter-human communication, time-critical control

and communication, etc.). Moreover, the system complexity

usually will grow exponentially in the blocklength. So we see

that having large blocklength might not be an option and we

have to restrict the blocklength to some reasonable size. The

question now arises what can theoretically be said about the

performance of communication systems with such restricted

blocksize.

For these reasons we have started to investigate the funda-

mental behavior of communication in the extreme case of an

ultra-short blocklength. We would like to ask questions like:

What performance can we expect from codes of fixed, very

short blocklength? What can we say about good design for

such codes?

To simplify the problem, we currently focus on binary

channels and start with the simplest type of communication:

a code with only two possible, equally likely messages.

II. CHANNEL MODEL

The most general binary channel is a butterfly-channel with

crossover probabilities that are not identical. In reference to

the standard binary symmetric channel (BSC) we call this
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channel model binary asymmetric channel (BAC). See Fig. 1
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Fig. 1. The binary asymmetric channel (BAC).

for a graphical representation. A BAC is specified by two

parameters: ǫ0 denoting the probability that a 0 is changed

into a 1 and ǫ1 denoting the probability that a 1 is changed

into a 0.

For symmetry reasons and without loss of generality we can

restrict the values of these parameters as follows:

0 ≤ ǫ0 ≤ ǫ1 ≤ 1, (1)

ǫ0 ≤ 1− ǫ1. (2)

We have depicted the region of possible choices of the

parameters ǫ0 and ǫ1 in Fig. 2. The region of interest given

by (1) and (2) is denoted by Ω.
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Fig. 2. Region of possible choices of the channel parameters ǫ0 and
ǫ1 of a BAC. The shaded area corresponds to the area of interest
according to (1) and (2).



III. MAIN RESULTS

A. Optimal Codes

We start with the definition of a special class of codes: flip

codes.

Definition 1: A code with two codewords is called flip code

if one codeword is the flipped version of the other, i.e., if in

each position where the first codeword has a 1, the second has

a 0, and vice-versa.

In particular, we define the flip code of type t as follows:

for every t ∈
{
0, 1, . . . ,

⌊
n

2

⌋}
, we have

Ct =

(
x1

x2

)

,

(
x

x̄

)

, (3)

where x1 = x , 00 · · · 0 11 · · · 1
︸ ︷︷ ︸

wH(x)=t

, (4)

x2 = x̄ , 11 · · · 100 · · · 0. (5)

Note that the parameter t is the Hamming weight of the first

codeword x1.

Due to the memorylessness of the BAC, the order of the

columns of any code is irrelevant. We therefore can restrict

ourselves without loss of generality to flip codes of type t to

describe all possible flip codes.

We are now ready for the following result.

Proposition 2: Fix the blocklength n. Then, irrespective of

the channel parameters ǫ0 and ǫ1, on a BAC there always exists

a flip code of type t, Ct, for some choice of 0 ≤ t ≤
⌊
n

2

⌋
that

is optimal in the sense that it minimizes the error probability.

We next would like to point out that the exact choice of t,

however, is not obvious and depends strongly on n, ǫ0, and ǫ1.

As an example the optimal choices of t are shown in Fig. 3

for n = 5. We see that depending on the channel parameters,

the optimal value of t changes.

B. Optimal Decision Rule

In any system with only two possible messages the optimal

maximum likelihood (ML) receiver can be easily described by
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Fig. 3. Optimal codebooks on a BAC: the optimal choice of the
parameter t for different values of ǫ0 and ǫ1 for a fixed blocklength
n = 5.

the log-likelihood ratio (LLR). In the situation of a flip code

of type t, Ct, the LLR is given as

LLR
(n)
t

(ǫ0, ǫ1, d) = (t− d) log

(
1− ǫ1

ǫ0

)

+ (n− t− d) log

(
1− ǫ0

ǫ1

)

, (6)

where d is defined to be the Hamming distance between the

received vector and the first codeword:

d , dH(x1,y). (7)

Proposition 3 (Optimal Decision Rule has a Threshold):

For a fixed flip code C
(n)
t

and a fixed BAC (ǫ0, ǫ1) ∈ Ω, there

exists a threshold ℓ, t ≤ ℓ ≤
⌊
n−1
2

⌋
, such that the optimal

decision rule can be stated as

g(y) =

{

1 if 0 ≤ d ≤ ℓ,

2 if ℓ+ 1 ≤ d ≤ n.
(8)

The threshold ℓ depends on (ǫ0, ǫ1).

C. Optimal Codes for a Fixed Decision Rule

Theorem 4: Fix blocklength n. Under a particular fixed

decision rule ℓ, the flip codebook of type t is optimal if (ǫ0, ǫ1)
belongs to

{

(ǫ0, ǫ1)
∣
∣
∣LLR

(n−1)
t

(ǫ0, ǫ1, ℓ) > 0

∧ LLR
(n−1)
t−1 (ǫ0, ǫ1, ℓ) < 0

}

.

If the region is empty, then t is not optimal for any BAC.

IV. CONCLUSION

We have investigated very short block-codes with two

messages on the most general binary channel, the binary

asymmetric channel (BAC). We have shown that in contrast

to capacity that always can be achieved with linear codes, the

best codes in the sense that they achieve the smallest average

probability of error for a fixed blocklength, often are not linear.

We have proven that in the case of only two messages M =
2, the optimal codes must be flip codes of type t, where the

optimal t depends on the channel and the blocklength. We

have then investigated the optimal decision rule and proven

that it is a threshold rule.

The derivation of the optimal coding scheme is difficult

because two independent effects interfere with each other: the

optimal choice of the code t for a fixed decision rule ℓ, and

the optimal choice of the decision rule ℓ for a fixed code t.

To find the exact choice of t, we have given part of a

solution for the suboptimal case when we fix the decision rule:

we have given a condition that shows whether a t is optimal or

not, but we are still not able to determine the correct t directly

from the parameters (n, ǫ0, ǫ1, ℓ).
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