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Abstract—Block-codes with a very small number of codewords
are investigated for the two special binary memoryless channels,
the binary symmetric channel (BSC) and the Z-channel (ZC).
The optimal (in the sense of minimum average error probability,
using maximum likelihood decoding) code structure is derived
for the cases of two, three, and four codewords and an arbitrary
blocklength. It is shown that for two possible messages, on a
BSC, the so-called flip codes of type t are optimal for any t,
while on a ZC, the flip code of type 0 is optimal. For codes with
three or four messages it is shown that the so-called weak flip
codes of some given type are optimal where the type depends
on the blocklength. For all cases an algorithm is presented that
constructs an optimal code for blocklength n recursively from
an optimal code of length n− 1. For the ZC a recursive optimal
code design is conjectured in the case of five possible messages.

The derivation of these optimal codes relies heavily on a new
approach of constructing and analyzing the code-matrix not
row-wise (codewords), but column-wise. Moreover, these results
also prove that the minimum Hamming distance might be the
wrong design criterion for optimal codes even for very symmetric
channels like the BSC.

I. INTRODUCTION

Shannon proved in his ground-breaking work [1] that it is

possible to find an information transmission scheme that can

transmit messages at arbitrarily small error probability as long

as the transmission rate in bits per channel use is below the

so-called capacity of the channel. However, he did not provide

a way on how to find such schemes, in particular he did not

tell us much about the design of codes apart from the fact that

good codes need to have large blocklength.

For many practical applications exactly this latter constraint

is rather unfortunate as often we cannot tolerate too much

delay (e.g., inter-human communication, time-critical control

and communication, etc.). Moreover, the system complexity

usually will grow exponentially in the blocklength. So we see

that having large blocklength might not be an option and we

have to restrict the blocklength to some reasonable size. The

question now arises as what can theoretically be said about the

performance of communication systems with such restricted

block size.

During the last years there has been an increased interests

in the theoretical understanding of finite-length coding, see

for example [2], [3]. There are several possible approaches

on how one can approach the problem of finite-length codes.

In [3] the authors fix an acceptable error probability and

a finite blocklength and then try to find bounds on the

possible transmission rates. In another approach, one fixes the

transmission rate and studies how the error probability depends

on the blocklength (i.e., one basically studies error exponents,

but for relatively small n) [2]. Both approaches are related to

Shannon’s ideas in the sense that they try to make fundamental

statements of what is possible and what not. The exact manner

in which these systems have to be built is ignored on purpose.

Our approach in this paper is different: based on the insight

that for very short blocklength one has no big hope of trans-

mitting much information with acceptable error probability, we

concentrate on codes with an only very small fixed number of

codewords: so called ultra-small block-codes. For such codes

we try to find a best possible design that minimizes the average

error probability. Hence, we put a big emphasis on finding

insights in how to actually design an optimal system.

There are interesting applications for such codes. For ex-

ample, in the situation of establishing an initial connection in

a wireless link, the amount of information that needs to be

transmitted during the setup of the link is very much limited

to usually only a couple of bits. However, these bits need to be

transmitted in very short time (e.g., blocklength in the range

of n = 20 to n = 30) with the highest possible reliability [4].

Note that while the motivation of this work focuses on rather

smaller values of n, our results nevertheless hold for arbitrary

finite n.

The study of ultra-small block-codes is interesting not

only because of the above mentioned direct applications,

but because their analytic description is a first step to a

better fundamental understanding of optimal nonlinear coding

schemes (with ML decoding) and of their performance based

on the true error probability rather than an upper bound on the

error probability derived from the union bound. To simplify

our analysis, we have restricted ourselves for the moment to

binary discrete memoryless channels.

For simplification of the exposition, in this paper we will

exclusively focus on two special cases: the binary symmetric

channel (BSC) and the Z-channel (ZC). For results on general

binary channels we refer to [5]. Note that while particularly for

the BSC much is known about linear code design [6], there is

basically no literature about optimal, possibly nonlinear codes.

The remainder of this paper is structured as follows: after

some comments about our notation we will introduce the
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channel models in Section II. In Section III we will give some

code definitions that will be used for the main results that are

summarized in Section IV. The proofs are omitted for space

reasons [5]. Finally, Section V contains a discussion about the

optimal code structure for the BSC.

As it is common in coding theory, vectors (denoted by

bold face Roman letters, e.g., x) are row-vectors. However,

for simplicity of notation and to avoid a huge number of

transpose-signs we slightly misuse this notational convention

for one special case: any vector c is a column-vector. It

should be always clear from the context because these vectors

are used to build codebook matrices and are therefore also

conceptually quite different from the transmitted codewords

x or the received sequence y. Otherwise our used notation

follows the main stream: we use capital letters for random

quantities and small letters for realizations.

II. CHANNEL MODELS

The most general binary discrete memoryless channel is

the so-called binary asymmetric channel (BAC). It has a

probability ǫ0 that an input 0 will be flipped into a 1 and

a (possible different) probability ǫ1 for a flip from 1 to 0.

In this paper we will exclusively focus on two special cases

of the BAC. The binary symmetric channel (BSC) has equal

cross-over probability ǫ0 = ǫ1 = ǫ, see Fig. 1. For symmetry

reasons and without loss of generality, we assume that ǫ < 1
2 .
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1− ǫ

1− ǫ

Fig. 1. The binary symmetric channel (BSC).

The Z-channel (ZC) will never distort an input 0, i.e., ǫ0 =
0. But the input 1 is flipped to 0 with probability ǫ1 < 1, see

Fig. 2.
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Fig. 2. The Z-channel (ZC).

We quickly review the following commonly used defini-

tions.

Definition 1: An (M, n) coding scheme for a BAC consists

of a codebook C(M,n) with M binary codewords xm of

length n, an encoder that maps every message m into its

corresponding codeword xm, and a decoder that makes a

decoding decision g(y) ∈ {1, . . . ,M} for every received

binary n-vector y.

We will always assume that the M possible messages are

equally likely.

Definition 2: Given that message m has been sent, let λ
(n)
m

be the probability of a decoding error of an (M, n) coding

scheme with blocklength n:

λ(n)m , Pr[g(Y) 6= m | X = xm] (1)

=
∑

y

PY|X(y|xm)I{g(y) 6= m}, (2)

where I{·} is the indicator function

I{statement} ,

{

1 if statement is true,

0 if statement is wrong.
(3)

The average error probability P
(n)
e of an (M, n) coding

scheme is defined as

P (n)
e ,

1

M

M∑

m=1

λ(n)m . (4)

Moreover, sometimes it will be more convenient to focus

on the probability of not making any error, denoted success

probability ψ
(n)
m :

ψ(n)
m , Pr[g(Y) = m | X = xm] (5)

=
∑

y

PY|X(y|xm)I{g(y) = m}. (6)

The definition of the average success probability1 P
(n)
c is

accordingly.

Definition 3: For a given codebook C, we define the de-

coding region Dm corresponding to the m-th codeword xm

as follows:

Dm , {y : g(y) = m}. (7)

Note that we will always assume that the decoder g is a

maximum likelihood (ML) decoder:

g(y) , arg max
1≤m≤M

PY|X(y|xm) (8)

that minimizes the average error probability P
(n)
e .

Note that we write the codebook C(M,n) as an M×n matrix

with the M rows corresponding to the M codewords:

C(M,n) =






x1

...

xM




 . (9)

Since we are only considering memoryless channels, any

permutation of the columns of C(M,n) will lead to another

codebook that is completely equivalent to the first in the sense

that it has the exact same error probability. Similarly, since we

assume equally likely messages, any permutation of rows only

changes the assignment of codewords to messages and has no

impact on the performance. Therefore, in the remainder of this

1The subscript “c” stands for “correct.”
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paper, we will always consider such equivalent codes as being

the same. In particular, when we speak of unique design we

do not exclude the always possible permutations of columns

and rows.

III. SOME BINARY CODES

Next, we will introduce some special codebooks that will

be used later on.

Definition 4: The flip code of type t for t ∈
{
0, 1, . . . ,

⌊
n
2

⌋}

is a code with M = 2 codewords defined by the following

codebook matrix C
(2,n)
t :

t columns
︷ ︸︸ ︷

C
(2,n)
t ,

(
x

x̄

)

=

(
0 · · · 0 1 · · · 1
1 · · · 1 0 · · · 0

)

. (10)

Defining the column vectors
{

c
(2)
1 ,

(
0
1

)

, c
(2)
2 ,

(
1
0

)}

, (11)

we see that a flip code of type t is given by a codebook matrix

that consists of (n− t) columns c
(2)
1 and t columns c

(2)
2 .

We again remind the reader that due to the memorylessness of

the BSC and the ZC, the order of the columns of any codebook

matrix is irrelevant. Moreover, we would like to point out that

while the flip code of type 0 corresponds to a repetition code,

the general flip code of type t with t > 0 is neither a repetition

code nor is it even linear.

Definition 5: A weak flip code of type (t2, t3) for M = 3

or M = 4 codewords is defined by a codebook matrix C
(M,n)
t2,t3

that consists of t1 , (n− t2 − t3) columns c
(M)
1 , t2 columns

c
(M)
2 , and t3 columns c

(M)
3 , where






c
(3)
1 ,





0
0
1



 , c
(3)
2 ,





0
1
0



 , c
(3)
3 ,





0
1
1










(12)

or






c
(4)
1 ,







0
0
1
1






, c

(4)
2 ,







0
1
0
1






, c

(4)
3 ,







0
1
1
0













, (13)

respectively.2

To show that the search for an optimal (possibly nonlinear)

code is neither trivial nor intuitive even in the symmetric BSC

case, we would like to start with a small example before we

summarize our main results.

Example 6: Assume a BSC with cross probability ǫ = 0.4,

M = 4, and a blocklength n = 4. Then consider the following

two weak flip codes:

C
(4,4)
1,0 ,







0 0 0 0
0 0 0 1
1 1 1 0
1 1 1 1






, C

(4,4)
2,0 ,







0 0 0 0
0 0 1 1
1 1 0 0
1 1 1 1






. (14)

2The name weak flip code is motivated by the fact that the weak flip codes
are a generalization of the flip code: while for M = 3 it is not possible to
have all codewords to be flipped versions of other codewords and for M = 4

such a definition would be too restrictive, it is still true that the distribution
of zeros and ones in the candidate columns c1, c2, and c3 is very balanced.

We observe that while both codes are linear, the first code

has a minimum Hamming distance 1, and the second has 2.

Assuming an ML decoder, the average error probability can be

expressed using the Hamming distance between the received

sequence and the codewords:

P (n)
e (C) =

1

M

4∑

m=1

∑

y
g(y) 6=m

PY|X(y|xm) (15)

=
(1− ǫ)4

4

4∑

m=1

∑

y
g(y) 6=m

(
ǫ

1− ǫ

)dH(xm,y)

, (16)

where dH(xm,y) is the Hamming distance between a code-

word xm and a received vector y.

If evaluated, we get an error probability P
(n)
e = 0.6112 for

C
(4,4)
1,0 and 0.64 for C

(4,4)
2,0 . Hence, even though the minimum

Hamming distance of the first codebook is smaller, its overall

performance is superior to the second codebook! ♦
Our goal is to find the structure of an optimal code C(M,n)∗

that satisfies

P (n)
e

(
C(M,n)∗

)
≤ P (n)

e

(
C(M,n)

)
, (17)

for any code C(M,n).

IV. MAIN RESULTS

A. Optimal Codes on ZC

Theorem 7: For a ZC and for any n ≥ 1, an optimal

codebook with two codewords M = 2 is the flip codebook

of type 0, C
(2,n)
0 . It has an error probability

P (n)
e

(
C
(2,n)
0

)
=

1

2
ǫn1 . (18)

Lemma 8: For a ZC and for any n ≥ 2, the average success

probabilities of the weak flip code of type (t, 0), 1 ≤ t ≤ ⌊n
2 ⌋,

with three codewords M = 3 or four codewords M = 4 are

3P (n)
c

(
C
(3,n)
t,0

)
= 1 +

t−1∑

d=0

(
t

d

)

(1− ǫ1)
t−d ǫd1

+

(n−t)−1
∑

d=0

(
n− t

d

)

(1− ǫ1)
(n−t)−d ǫd1; (19)

4P (n)
c

(
C
(4,n)
t,0

)
= 1 +

t−1∑

d=0

(
t

d

)

(1− ǫ1)
t−d ǫd1

+
n−t−1∑

d=0

(
n− t

d

)

(1− ǫ1)
(n−t)−d ǫd1

+

n−1∑

d=0

[(
n

d

)

−

(
n− t

d− t

)

−

(
t

d− (n− t)

)]

(1− ǫ1)
n−d ǫd1. (20)

Moreover, these average success probabilities are increasing

with t.
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Theorem 9: For a ZC and for any n ≥ 2, an optimal

codebook with three codewords M = 3 or four codewords

M = 4 is the weak flip code of type (t∗, 0) with t∗ ,
⌊
n
2

⌋
:

C
(M,n)∗
ZC = C

(M,n)
t∗,0 . (21)

Note that for M = 2 and M = 4, the optimal codes given in

Theorem 7 and Theorem 9 are linear. The proof of Theorem 9

shows that for even n, these linear codes are the unique optimal

codes. For odd n, there are other (also nonlinear) designs that

achieve the same optimal performance.

It is remarkable that these optimal codes perform quite well

even for very short blocklength. As an example, consider four

codewords M = 4 of blocklength n = 10 that are used over

a ZC with ǫ1 = 0.3: the optimal average error probability is

P
(n)
e

(
C
(4,10)
5,0

)
≈ 2.43 · 10−3. If we increase the blocklength

to n = 20, we already achieve an average error probability

P
(n)
e

(
C
(4,20)
10,0

)
≈ 5.90 · 10−6.

Moreover, also note that the optimal code C
(4,n)
t,0 can be

seen as a double-flip code consisting of the combination of

the flip-code of type 0 with the flip-code of type t > 0:

C
(4,n)
t,0 =







x1

x2

x3

x4







=







0

x

x̄

1







(22)

with x defined in (10).

Since we know that the success probability increases with

n on a binary DMC, it is quite natural to try to construct the

optimal codes recursively in n.

Corollary 10: The optimal codebooks defined in Theorem 9

for M = 3 and 4 can be constructed recursively in the

blocklength n. We start with an optimal codebook for n = 2:

C
(M,2)∗
ZC =

(

c
(M)
1 , c

(M)
2

)

. (23)

Then, we recursively construct the optimal codebook for n ≥ 3

by using C
(M,n−1)∗
ZC and appending

{

c
(M)
1 if n mod 2 = 1,

c
(M)
2 if n mod 2 = 0.

(24)

B. Conjectured Optimal Codes on ZC for M = 5

The idea of designing an optimal code recursively promises

to be a very powerful approach. However, note that for larger

values of M, the recursion might need a step-size larger than

1. In the following we conjecture an optimal code construction

for a ZC in the case of five codewords M = 5 with a different

recursive design for n odd and n even.

We define the following five column vectors:






c
(5)
1 ,









0
0
0
1
1









, c
(5)
2 ,









0
0
1
0
1









, c
(5)
3 ,









0
1
0
0
1









,

c
(5)
4 ,









0
0
1
1
1









, c
(5)
5 ,









0
1
0
1
1















. (25)

An optimal code can be constructed recursively for even n

in the following way: we start with an optimal codebook for

n = 8:

C
(5,8)∗
ZC =

(

c
(5)
1 , c

(5)
2 , c

(5)
3 , c

(5)
1 , c

(5)
2 , c

(5)
3 , c

(5)
4 , c

(5)
5

)

. (26)

Then, we recursively construct an optimal codebook for n ≥

10, n even, by using C
(5,n−2)∗
ZC and appending







(
c
(5)
4 , c

(5)
5

)
if n mod 10 = 0,

(
c
(5)
1 , c

(5)
2

)
if n mod 10 = 2,

(
c
(5)
1 , c

(5)
3

)
if n mod 10 = 4,

(
c
(5)
3 , c

(5)
4

)
if n mod 10 = 6,

(
c
(5)
2 , c

(5)
5

)
if n mod 10 = 8.

(27)

For n odd we have

C
(5,9)∗
ZC =

(

c
(5)
1 , c

(5)
2 , c

(5)
3 , c

(5)
4 , c

(5)
5 , c

(5)
1 , c

(5)
2 , c

(5)
1 , c

(5)
3

)

.

(28)

Then, we recursively construct an optimal codebook for n ≥

11, n odd, by using C
(5,n−2)∗
ZC and appending







(
c
(5)
3 , c

(5)
4

)
if n mod 10 = 1,

(
c
(5)
2 , c

(5)
5

)
if n mod 10 = 3,

(
c
(5)
4 , c

(5)
5

)
if n mod 10 = 5,

(
c
(5)
1 , c

(5)
2

)
if n mod 10 = 7,

(
c
(5)
1 , c

(5)
3

)
if n mod 10 = 9.

(29)

Note that the recursive structure in (27) and (29) is actually

identical apart from the ordering. Also note that when increas-

ing the blocklength by 10, we add each of the five column

vectors in (25) exactly twice. For n < 10 the optimal code

structure goes through some transient states.

C. Optimal Codes on BSC

Theorem 11: For a BSC and for any n ≥ 1, an optimal

codebook with two codewords M = 2 is the flip code of type

t for any t ∈
{
0, 1, . . . ,

⌊
n
2

⌋}
.

Theorem 12: For any n ≥ 2, define

t∗2 ,

⌊
n− 1

3

⌋

, t∗3 ,

⌊
n+ 1

3

⌋

. (30)

For a BSC and for any n ≥ 2, an optimal codebook with three

codewords M = 3 or four codewords M = 4 is the weak flip

code of type (t∗2, t
∗
3):

C
(M,n)∗
BSC = C

(M,n)
t∗
2
,t∗

3

. (31)

Note that for M = 2, the optimal codes given in Theorem 11

can be linear or nonlinear. For M = 4, by the definition

of weak flip code of type (t2, t3), the optimal codes in

Theorem 12 are linear. However, due to the strong symmetry
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of the BSC, there also exist nonlinear codes with the same

optimal performance.

Moreover, note that one can learn from the proof of The-

orem 12 that the received vector y that is farthest from the

three codewords when M = 3 is

y = (1, 1, · · · , 1
︸ ︷︷ ︸

t∗
1

, 1, 1, · · · , 1
︸ ︷︷ ︸

t∗
2

, 0, 0, . . . , 0
︸ ︷︷ ︸

t∗
3

). (32)

This is identical to the optimal choice of a fourth codeword

x4 when M = 4.

Corollary 13: The optimal codebooks defined in Theorem 9

for M = 3 and M = 4 can be constructed recursively in the

blocklength n. We start with an optimal codebook for n = 2:

C
(M,2)∗
BSC =

(

c
(M)
1 , c

(M)
3

)

. (33)

Then, we recursively construct the optimal codebook for n ≥ 3

by using C
(M,n−1)∗
BSC and appending







c
(M)
1 if n mod 3 = 0,

c
(M)
2 if n mod 3 = 1,

c
(M)
3 if n mod 3 = 2.

(34)

V. PAIRWISE HAMMING DISTANCE STRUCTURE

It is quite common in conventional coding theory to use

the minimum Hamming distance or the weight enumerating

function (WEF) of a code as a design and quality criterion

[6]. This is motivated by the equivalence of Hamming weight

and Hamming distance for linear codes, and by the union

bound that converts the search for the global error probability

into pairwise error probabilities. Since we are interested in

the globally optimal code design and the best performance

achieved by an ML decoder, we can neither use the union

bound, nor can we a priori restrict our search to linear codes.

Note that for most values of M, linear codes do not even exist!

In order to demonstrate that these commonly used design

criteria do not work when searching for an optimal code, we

will now investigate the minimum Hamming distance of an

optimal code. Although, as (16) shows, the error probability

performance of a BSC is completely specified by the Hamming

distance between codewords and received vectors, it turns

out that a design based on the minimum Hamming distance

can fail, even for the very symmetric BSC and even for

linear codes. Recall that we have seen a first glimpse of this

behavior in Example 6. In the case of a more general (and not

symmetric) BAC, this is even more pronounced [5]. In general

one has to rely on the pairwise Hamming distance vector.

Definition 14: Given a codebook C(M,n) with codewords

xi we define the pairwise Hamming distance vector d(M,n)

of length
(M−1)M

2 as

d(M,n) ,
(

d
(n)
12 , d

(n)
13 , d

(n)
23 , d

(n)
14 , d

(n)
24 , d

(n)
34 , . . . ,

d
(n)
1M, d

(n)
2M, . . . , d

(n)
(M−1)M

)

(35)

with d
(n)
ij , dH(xi,xj), 1 ≤ i < j ≤ M. The minimum

Hamming distance d
(n)
min is defined as the minimum component

of the vector d(M,n).

For M = 3 or M = 4, we know from Theorem 12 that the

optimal code C
(M,n)∗
BSC consists of t∗2 columns c

(M)
2 , t∗3 columns

c
(M)
3 , and t∗1 , n−t∗2−t

∗
3 columns c

(M)
1 . Using the shorthand

k , ⌊n
3 ⌋, we can write this as

(t∗1, t
∗
2, t

∗
3) =







(k + 1, k − 1, k) if n mod 3 = 0,

(k + 1, k, k) if n mod 3 = 1,

(k + 1, k, k + 1) if n mod 3 = 2.

(36)

We will compare this optimal code with the following different

weak flip code C
(M,n)
subopt :

(t1, t2, t3) =







(k, k, k) if n mod 3 = 0,

(k + 1, k − 1, k + 1) if n mod 3 = 1,

(k + 2, k, k) if n mod 3 = 2.

(37)

This code can actually be constructed from the optimal code

C
(M,n−1)∗
BSC by appending a corresponding column (depending

on n). In fact, by Corollary 13, we can prove that this second

weak flip code is strictly suboptimal.

Next note that the pairwise Hamming distance vector of any

weak flip code C
(M,n)
t2,t3

can be computed readily from the code

parameters (t1 , n− t2 − t3, t2, t3) as follows:

d(3,n) =
(
t2 + t3, t1 + t3, t1 + t2

)
, (38)

d(4,n) =
(
t2 + t3, t1 + t3, t1 + t2, t1 + t2, t1 + t3, t2 + t3

)
.

(39)

If we now compare the pairwise Hamming distance vector

of C
(M,n)∗
BSC and C

(M,n)
subopt for n mod 3 = 0, we see that the

minimum Hamming distance of the optimal code is 2k−1 and

therefore strictly smaller than the minimum Hamming distance

2k of the suboptimal code. By adapting the construction of

the strictly suboptimal code C
(M,n)
subopt , a similar statement can

be made for the case when n mod 3 = 1.

We have the following proposition.

Proposition 15: On a BSC for M = 3 or M = 4 and

for all n with n mod 3 = 0 or n mod 3 = 1, the codes that

maximize the minimum Hamming distance d
(n)
min can be strictly

suboptimal. This is not true in the case of n mod 3 = 2.
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