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Abstract—In contrast to binary codes, odd-length self-dual
codes exist over the integers modulo 4. Lately, the use of
lattices constructed from codes over Z4 to guarantee secure
communication in a Gaussian wiretap channel was proposed
and shown to exceed the performance of lattices from binary
codes. This performance is measured regarding the secrecy
gain, a criterion that depends on a lattice’s volume and theta
series. Formally unimodular lattices, i.e., lattices with the same
theta series as their dual, have presented promising results with
respect to the secrecy gain. While previous contributions in the
literature were mainly focused on even-dimensional lattices, this
paper addresses the secrecy gain of odd-dimensional formally
unimodular lattices obtained from codes over Z4, together with
a novel construction of such codes.

I. INTRODUCTION

The wiretap channel is a communication model proposed by
Wyner in [1], where a legit communication between two par-
ties, Alice and Bob, is wiretapped through a secondary channel
by an eavesdropper Eve. Based on the relative qualities of the
two channels, a coding scheme is designed to ensure that Bob
can decode at close to zero error rate while the equivocation
(i.e., the posterior entropy about the message after observing
her channel output) for Eve is maximized.

In particular, results on Gaussian wiretap channel assuming
lattice encoding/decoding techniques [2]–[4] have considered
mainly two design criteria to evaluate the performance of a
given lattice: the secrecy gain [2] and the flatness factor [4].
The former is based on minimizing Eve’s success probability
of correctly estimating the transmitted message, while the
latter concerns the minimization of the mutual information
between Eve’s channel observation and the message. Despite
the different definitions, both criteria rely on optimizing the
theta function of a lattice.

Since the theta series of a unimodular lattice is defined
through Hecke’s theorem [5, Th. 7, p. 187], its respective
secrecy gain is completely characterized [3]. Moreover, due
to the connection between the weight enumerator of a linear
binary code and the theta function of a lattice obtained
from the code via Construction A, the secrecy gain of even-
dimensional Construction A lattices was also studied [6]. Re-
cently, a generalization of unimodular lattices was introduced,
the formally unimodular lattices, which are lattices with the
same theta series as their dual [7], [8]. Formally unimodular
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Construction A lattices can outperform the secrecy gain of
unimodular lattices.

The secrecy gain of formally unimodular lattices constructed
from codes over Z4 via the so-called Construction A4 was
initially studied in [9], where improvements were shown when
considering even-length formally self-dual codes, i.e., codes
such that their symmetrized weight enumerator coincides with
its dual. This paper extends this idea to lattices constructed
from odd-length formally self-dual codes. It appears to be the
first work that universally addresses odd-dimensional formally
unimodular (which includes unimodular) lattices, which have
not been studied extensively in the past literature. More
specifically, the contributions of this paper are:

i) An original construction of odd-length codes over Z4,
called odd extension codes, and conditions for such codes
to be self-dual (see Proposition 2).

ii) We demonstrate that the secrecy gain of odd-dimensional
formally unimodular lattices obtained from odd extension
codes, denoted by odd extension lattices, can be at least
as good as the best secrecy gain in the preceding even
dimension (see Proposition 3). Gains are also observed
with respect to previous results for odd-dimensional uni-
modular lattices.

iii) Upper bounds for the secrecy gain of Type I formally
unimodular lattices are recalled on a comparative basis
(see Theorem 2).

Given that codes over Z4 can be entirely characterized (up
to equivalence) through their generator matrices according to
[10, eq. (2)], we have also done a complete search in some
dimensions, which allows us to state the best possible secrecy
gain of Construction A4 formally unimodular lattices obtained
from formally self-dual codes in dimension 7.

This paper is organized as follows: Sec. II establishes
relevant definitions, Sec. III recalls results on how to calculate
the secrecy gain of Construction A4 lattices, Sec. IV defines
and studies properties of the odd extension codes, and Secs. V
and VI explore theoretical and numerical results of the secrecy
gain of odd extensions lattices. Sec. VII concludes the paper.
Due to page limitations, some proofs are omitted and can be
found in the extended version [11].

II. DEFINITIONS AND PRELIMINARIES

A. Notation
We denote by N, Z, and R the set of naturals, integers,

and reals, respectively. [i : j] ≜ {i, i+ 1, . . . , j} for i, j ∈ Z,
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i ≤ j. Vectors are row vectors and boldfaced, e.g., x. The all-
zero vector is denoted by 0. Matrices and sets are represented
by capital sans serif letters and calligraphic uppercase letters,
respectively, e.g., X and X . Xk×n represents a matrix of size
k×n, and a square matrix of size n is denoted by Xn. We omit
the subscript of a matrix if it is clearly understood from the
context. An identity matrix and an all-zero matrix are denoted
by I and O, respectively. We denote by, respectively, wH(x)
and wLee(x) the Hamming weight and the Lee weight of a
vector x ∈ Zn

m, where Zm = {0, . . . ,m − 1} is the ring
of integers modulo m. In this work, m can be 2 or 4. We
use the code parameters [n,M ] or [n,M, dLee] to denote a
linear code C of length n, M codewords, and minimum Lee
distance dLee ≜ minx,y∈C wLee(x− y). (·)T represents the
transpose of its argument and ⟨·, ·⟩ denotes the inner product
between two vectors over Zm. A generator matrix of a code C
is represented by GC , while C G represents the corresponding
linear code generated by G. ϕm : Zn

m → Zn is defined as the
natural embedding, i.e., ϕm(x) maps each element x ∈ Zm to
the corresponding integer.

B. Basics on Codes and Lattices

In this section, we briefly review well-known concepts
related to codes over Zm, m ∈ {2, 4}, and their respective
lattices. Let A be an [n,M ] code over Z2. Its weight enumer-
ator is

WA (x, y) =
∑
a∈A

xn−wH(a)ywH(a).

A Z4-linear code C of length n is an additive subgroup of
Zn
4 . If C is a Z4-linear code of length n, then C⊥ ≜ {x ∈

Zn
4 : ⟨x,y⟩ = 0, for all y ∈ C } is the dual code of C .
From [12, Prop. 1.1], it is well-known that any Z4-linear

code is permutation equivalent to a code C with a generator
matrix G in standard form

G =

(
Ik1 Ak1×k2 Bk1×(n−k1−k2)

Ok2×k1
2Ik2

2Ck2×(n−k1−k2)

)
, (1)

where A and C are binary matrices, and B is defined over Z4.
Such a code C is said to be of type 4k12k2 .

The symmetrized weight enumerator (swe) of a Z4-linear
code C is defined as

sweC (a, b, c) =
∑
c∈C

an0(c)bn1(c)+n3(c)cn2(c),

where ni(c) ≜ |{j ∈ [1 : n] : cj = i}|, i ∈ Z4.1 The corre-
sponding MacWilliams identity for Z4-linear codes is given
by [12, Th. 2.3]

sweC (a, b, c)

=
1

|C⊥|
sweC⊥(a+ 2b+ c, a− c, a− 2b+ c). (2)

We have the following families of codes over Z4: A code C
is self-dual if C = C⊥. If there is a permutation of coordinates

1The exponent of b combines weights 1 and 3 according to the Lee distance
definition.

and a (possible) change of signs carried out by a mapping π,
such that C = π(C⊥), C is called isodual. If C and C⊥ have
the same symmetrized weight enumerator, i.e., sweC (a, b, c) =
sweC⊥(a, b, c), C is a formally self-dual code.

From (2), the swe of a code belonging to any of these classes
satisfies

sweC (a, b, c) =
1

|C |
sweC (a+ 2b+ c, a− c, a− 2b+ c). (3)

A (full rank) lattice Λ ⊂ Rn is a discrete additive subgroup
of Rn, which can be viewed as Λ = {λ = uLn×n : u ∈ Zn},
where the n rows of L form a lattice basis in Rn. The volume
of Λ is vol(Λ) = |det(L)|. If a lattice Λ has generator matrix
L, then the lattice Λ⋆ ⊂ Rn generated by

(
L−1

)T
is called

the dual lattice of Λ. For lattices, the analogue of the weight
enumerator of a code is the theta series, defined as follows.

Definition 1 (Theta series): Let Λ be a lattice, its theta series
is given by

ΘΛ(z) =
∑
λ∈Λ

q∥λ∥2

,

where q ≜ eiπz and Im{z} > 0.
Analogously, the spirit of the MacWilliams identity can be

captured by the Jacobi’s formula [5, eq. (19), Ch. 4]

ΘΛ(z) = vol(Λ⋆)
( i
z

)n
2

ΘΛ⋆

(
−1

z

)
.

A lattice is said to be integral if the inner product of any
two lattice vectors is an integer. An integral lattice such that
Λ = Λ⋆ is called a unimodular lattice. A lattice Λ is called
isodual if it can be obtained from its dual Λ⋆ by (possibly)
a rotation or reflection. In [7], a new and broader family
was presented, namely, the formally unimodular lattices, that
consists of lattices having the same theta series as their duals,
i.e., ΘΛ(z) = ΘΛ⋆(z). We say that a formally unimodular
lattice is of Type I if it is also integral and is of Type II if the
inner product of any two lattice vectors is a multiple of 2.

From [8, Prop. 12], a formally unimodular lattice Λ has
vol(Λ) = 1. Hence, the theta series of a formally unimodular
lattice is such that

ΘΛ(z) =
( i
z

)n
2

ΘΛ

(
−1

z

)
.

Lattices can be constructed from binary linear codes via the
so-called Construction A [5], defined as follows.

Definition 2 (Construction A): Let A be a binary [n,M ]
code, then ΛA(A ) ≜ 1√

2
(ϕ2(A ) + 2Zn) is a lattice.

There is an analogue of Construction A for codes over Z4,
which is called Construction A4.

Definition 3 (Construction A4 [13, Ch. 12.5.3]): If C is a
Z4-linear code, then ΛA4

(C ) = 1
2 (ϕ4(C ) + 4Zn) is a lattice.

It is known that ΛA4
(C ) is a unimodular lattice if and only

if the Z4-linear code C is a self-dual code [12, Prop. 12.2]. For
notational convenience, sometimes the mapping ϕm is omitted.

Considering the Z4-linear code C , the theta series of a
Construction A4 lattice can be expressed as follows.
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Proposition 1 ([9]): Let C be a Z4-linear code with
sweC (a, b, c), then the theta series of ΛA4

(C ) is

ΘΛA4
(C )(z) = sweC (ϑ3(4z), ϑ2(z)/2, ϑ2(4z)).

III. SECRECY GAIN OF CONSTRUCTION A4 LATTICES

The secrecy gain of Construction A4 lattices was discussed
in a former work [9]. We review the main results in this section
and start with the definition of secrecy gain [3].

Definition 4 (Secrecy function and secrecy gain [3, Defs. 1
and 2]): Let Λ be a lattice with volume vol(Λ) = νn. The
secrecy function of Λ is defined by

ΞΛ(τ) ≜
ΘνZn(iτ)

ΘΛ(iτ)
,

for τ ≜ −iz > 0. The (strong) secrecy gain of a lattice is
given by ξΛ ≜ supτ>0 ΞΛ(τ).

The higher the secrecy gain of a lattice, the more secure the
lattice wiretap code is [3]. Hence, the objective is to design
good lattices to achieve a high secrecy gain. The first family
of lattices studied in the literature was unimodular lattices [6],
[14], due to the tractability of their theta functions. Also, for
unimodular lattices, Belfiore and Solé conjectured that the
following holds.

Conjecture 1: [15] The secrecy function of a unimodular
lattice attains its maximum at τ = 1.

This result was demonstrated to hold for infinitely many
unimodular lattices [16]. Recently, techniques to extend this
result to formally unimodular lattices constructed from codes
over Zm were discussed in [7], [9], together with indications
of superior results for the secrecy gain, when compared to
unimodular lattices.

An alternative way of expressing the secrecy gain of Con-
struction A4 lattices from formally self-dual codes over Z4

allows a simplified search for its maximum as follows.
Theorem 1 ([9, Th. 2]): Let C be a formally self-dual code

over Z4. Then[
ΞΛA4 (C )(τ)

]−1

=
sweC

(
1 + t, 4

√
1− t4, 1− t

)
2n

,

where 0 < t(τ) ≜ ϑ4(iτ)/ϑ3(iτ) < 1. Moreover, define hC (t) ≜
sweC

(
1+ t, 4

√
1− t4, 1− t

)
for 0 < t < 1. Then, maximizing

the secrecy function ΞΛA4
(C )(τ) is equivalent to determining

the minimum of hC (t) on t ∈ (0, 1).
Example 1: Consider a [7, 27] code C over Z4, with

symmetrized weight enumerator given by

sweC (a, b, c)

= a7 + a6c+ 3a5c2 + 12a4b2c+ 3a4c3 + 12a3b2c2

+ 3a3c4 + 24a2b4c+ 12a2b2c3 + 3a2c5

+ 8ab6 + 24ab4c2 + 12ab2c4 + ac6 + 8b6c+ c7.

Observe that the swe satisfies the MacWilliams identity (2).
If we set hC (t) = sweC

(
1+t, 4

√
1− t4, 1−t

)
, then h′

C (t) =
0 has a unique solution in the interval t ∈ (0, 1), t = 1/ 4√2,
which is a minimum. Therefore, ξΛA(C ) ≈ 1.172. ♢

IV. ODD EXTENSION CODES

Unlike binary codes, codes over Z4 admit self-dual (and
formally self-dual) codes of odd length. We will use the term
odd extension codes to describe Z4 codes generated by

GCoext ≜


a1

aη
0 0 2 2c1 2c2 2cη

Iη Bη

. (4)

It will result in a [2η + 1, 4η21] Z4-linear code. The con-
struction is inspired by (1) with k1 = η and k2 = 1, where
A and C are chosen to be A = aT = (a1, · · · , aη)T and
C = c = (c1, c2, · · · , cη), respectively, ai, ci ∈ Z2, i ∈ [η].
Similar construction for odd-length isodual codes over binary
rings can be found in [17, Th. 3.8].

The odd extension construction is defined for a general
choice of Bη . However, we will mostly consider the case where
Bη is a pure or bordered circulant matrix [13, Ch. 9.8], i.e.,

Bpc
η ≜


r1 r2 r3 · · · rη
rη r1 r2 · · · rη−1

...
...

...
. . .

...
r2 r3 r4 · · · r1

 or (5)

Bbc
η ≜


α β β · · · β
γ r1 r2 · · · rη−1

...
...

...
. . .

...
γ r2 r3 · · · r1

, (6)

where α, β, γ ∈ Z4 and ri ∈ Z4, i ∈ [η].
If Coext is generated as in (4) using (5) or (6), we call

such code an odd extension code from double circulant code.
Moreover, we know from [10, Eq. (3)] that its dual code is
generated by

GC⊥
oext =


c1

cη
2a1 2aη 2 0 0 0

−BT
η − cTa Iη

.

We now give conditions for an odd extension code to be
self-dual.

Proposition 2: Consider an odd extension code Coext gener-
ated by GCoext as in (4). Then, Coext is self-dual if and only if
the following conditions hold

i) aTa+ BBT ≡ 3Iη (mod 4),
ii) 2a+ 2cBT ≡ 0 (mod 4).

Proof: Since Coext is self-dual if and only if
GCoext

(
GC

oext

)T
= Oη+1, we have(
Iη aT Bη

0 2 2c

) Iη 0T

a 2
BT
η cT

 = Oη+1

by using GCoext as in (4). Thus, this gives that I+aTa+BBT =
Oη and 2a + 2cBT ≡ 0 (mod 4), which leads to conditions
i) and ii) stated in the proposition.
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Example 2: Consider a [13, 213] formally self-dual code
Coext over Z4 generated as in (4), where

Bpc =


0 2 1 2 2 2
2 0 2 1 2 2
2 2 0 2 1 2
2 2 2 0 2 1
1 2 2 2 0 2
2 1 2 2 2 0


is a pure double circulant matrix, c = (0, 0, 0, 0, 1, 1) and
a = (0, 0, 1, 1, 0, 0). Since

aTa+ BBT =


1 0 2 0 2 0
0 1 0 2 0 2
2 0 2 1 2 0
0 2 1 2 0 2
2 0 2 0 1 0
0 2 0 2 0 1

 ̸= 3I6,

this implies that Coext is not self-dual. ♢
Example 3: The [9, 29] odd extension code generated by

GCoext =


1 0 0 0 0 2 1 1 1
0 1 0 0 0 1 1 2 3
0 0 1 0 0 1 3 1 2
0 0 0 1 0 1 2 3 1
0 0 0 0 2 0 0 0 0


satisfies the conditions of Proposition 2 and it is self-dual. ♢

V. SECRECY GAIN OF ODD EXTENSION LATTICES

Lattices constructed via Construction A4 from odd ex-
tension codes will be called odd extension lattices. This
section explores the secrecy gain of odd extension formally
unimodular lattices. The first property we highlight is that the
symmetrized weight enumerator of Coext can be obtained from
the one of C , generated by GC = (Iη Bη). As a consequence,
their secrecy gains coincide.

Proposition 3: Let C be a [2η,M ] code over Z4 with
generator matrix GC = (I B), η ∈ N. Consider a [2η+1, 2M ]
odd extension code Coext with the generator matrix

GCoext =

(
Iη 0T Bη

0 2 0

)
.

Then, sweCoext(a, b, c) = sweC (a, b, c) · (a + c) and
ΞΛA4

(C )(τ) = ΞΛA4
(Coext)(τ).

Proof: Observe that a codeword voext ∈ Coext can be
expressed as

voext = (u1, . . . , uη, uη+1)GCoext

=

(
u1, . . . , uη, 2uη+1,

η∑
i=1

bi,1ui, · · · ,
η∑

i=1

bi,ηui

)
,

where (u1, . . . , uη, uη+1) ∈ Zη
4 × Z2 is a message vector.

For convenience, denote by voext ≜ [u, 2uη+1,w] and v ≜
uGC = [u,w]. Then, we have

sweCoext(a, b, c)

=
∑

[u,2u2η+1,w]∈Coext

an0(voext)bn1(voext)+n3(voext)cn2(voext)

(a)
=

∑
[u,0,w]∈Coext

an0(voext)bn1(voext)+n3(voext)cn2(voext)

+
∑

[u,2,w]∈Coext

an0(voext)bn1(voext)+n3(voext)cn2(voext)

=
∑

[u,w]∈C

an0(v)+1bn1(v)+n3(v)cn2(v)

+
∑

[u,w]∈C

an0(v)bn1(v)+n3(v)cn2(v)+1

= sweC (a, b, c) · (a+ c), (7)

where (a) holds since uη+1 ∈ Z2.
Next, using Theorem 1 and (7), we have

ΞΛA4 (Coext)(τ) =
22η+1

sweCoext

(
1 + t, 4

√
1− t4, 1− t

)
=

22η+1

sweC

(
1 + t, 4

√
1− t4, 1− t

)
· (1 + t+ 1− t)

=
22η

sweC

(
1 + t, 4

√
1− t4, 1− t

) = ΞΛA4 (C )(τ).

The next example points out that the swe’s between Coext
and C can be different.

Example 4: Consider a [12, 212] code Cpdc with generator
matrix G =

(
Iη Bpc

η

)
, where

Bpc
η =


0 2 1 2 2 2
2 0 2 1 2 2
2 2 0 2 1 2
2 2 2 0 2 1
1 2 2 2 0 2
2 1 2 2 2 0

.

Observe that ξΛA4
(Cpdc) ≈ 1.657. If we now consider the

[13, 213] code Coext generated as in (4), with Bη = Bpc
η ,

a = (0, 0, 1, 1, 0, 0) and c = (0, 0, 0, 0, 1, 1), we would get
sweCoext(a, b, c) ̸= sweCpdc(a, b, c) · (a+ c). However, one can
see that ξΛA4

(Coext) ≈ 1.704 > ξΛA4
(Cpdc). ♢

Proposition 3 points out that every secrecy gain in a partic-
ular even dimension 2η can also be achieved by a respective
odd extension code in dimension 2η + 1. On the other hand,
Example 4 shows that there are cases when the swe’s differ,
which could lead to improvements. The remaining question is
whether the secrecy gain could be improved concerning odd
unimodular lattices [6] and/or with respect to the preceding
even dimension. The answer is positive; more details will be
explored in the next section.
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VI. SECRECY-GOOD ODD DIMENSIONAL LATTICES

An upper bound on the secrecy gain of Type I formally
unimodular lattices is presented, both for even or odd dimen-
sions. The derivation is similar to the one in [14, Section
IV]. However, our approach is based on the technique in our
prior work that is sufficient to prove the Belfiore and Solé
conjecture for Construction A formally unimodular packings
obtained from formally self-dual codes [8]. See the complete
proof of [11, Lemma 36].

Theorem 2: For any n-dimensional Type I formally unimod-
ular lattice Λ that satisfies the Belfiore and Solé’s conjecture
(Conjecture 1) with 2 ≤ n ≤ 40, the secrecy gain is upper
bounded by

ξΛ ≤ 1

ωS−1eT
1

,

where ω =
(
1, 3/4, . . . , (3/4)ℓ), S is an (ℓ+1) by (ℓ+1) matrix

whose (s + 1)-th column contains the first ℓ + 1 coefficients
of the power series of ϑn−8s

3 (z)ΘE8
(z)s for s ∈ [0 : ℓ], es+1

is the vector with a 1 in the (s + 1)-th coordinate and zeros
elsewhere, E8 is the Gosset lattice of dimension 8, and ℓ ≜
⌊n/8⌋. Note that

ΘE8
(z) = ϑ3(z)

8 − ϑ4
3(z)ϑ

4
4(z) + ϑ8

4(z)

= 1 + 240q2 + 2160q4 + 6720q6 + · · · .

We present results of the secrecy gain of odd-dimensional
formally unimodular Construction A4 lattices in Table I. In the
table, opdc refers to an odd extension code, where Bpc

η is a
pure circulant matrix as in (5), obdc refers to an odd extension
code, where Bbc

η is a bordered circulant matrix as in (6).
Values highlighted values are the ones outperforming pre-

viously known results in the literature [6]. The upper bound
refers to Theorem 2, which concerns only Type I formally
unimodular lattices. We remark that since not every formally
unimodular lattice is Type I (and neither Type II), it is possible
to obtain a good secrecy gain of a formally unimodular lattice
that exceeds the upper bound on the secrecy gain of Type I
formally unimodular lattices. We can notice that this upper
bound is exceeded in dimensions 7, 13, and 15.

Following the notation of (4)–(6), for each dimension, we
are going to specify the vectors a, c ∈ Zη

2 , the circulant vector
r = (r1, . . . , rη) (or (r1, . . . , rη−1)) that generates Bpc

η (or
Bbc
η ), and the values of α, β, γ (if applicable) that yield to the

respective secrecy gain. For example, in length 7, the vectors
a = c = (0, 0, 0), r = (2, 1, 0) indicates the generator matrix

GCoext =


1 0 0 0 2 1 0
0 1 0 0 0 2 1
0 0 1 0 1 0 2
0 0 0 2 0 0 0

,

which is the generator matrix of the code with swe presented
in Example 1. Moreover, we can observe that this [7, 27] code

TABLE I
SECRECY GAIN OF ODD EXTENSION CONSTRUCTION A4 LATTICES

[2η + 1,M, dLee] Reference ξΛA4
(C) Best-known [6] Upper bound (Type I)

[7, 27, 2] opdc 1.172 − 1

[9, 29, 2] obdc 1.333 − 1.391

[11, 211, 4] opdc 1.512 − 1.524

[13, 213, 4] opdc,Ex. 4 1.704 − 1.684

[15, 215, 6] obdc 1.972 1.882 1.882

[17, 217, 4] opdc 2.203 2.133 2.387

[19, 219, 4] obdc 2.641 2.462 2.709

[21, 221, 6] [18, App. A] 2.909 2.909 3.094

[23, 223, 10] [18, App. A] 3.556 3.556 3.556

[31, 231, 6] [18, App. A] 6.564 − 6.774

is an application of Proposition 3, i.e., an odd extension of a
[6, 26] code generated by

GC =

1 0 0 2 1 0
0 1 0 0 2 1
0 0 1 1 0 2

.

Our code search revealed that this is the highest secrecy gain
for Construction A4 lattices obtained from all the possible Z4-
linear formally self-dual codes of length 7 generated by the
standard form as in (1).

In summary, the parameters for the generator matrices of
the codes in Table I are, respectively:

Length 9: α = 2, β = γ = 1, r = (1, 2, 3),
a = c = (0, 0, 0, 0).

Length 11: r = (3, 1, 1, 1, 1), a = c = (0, 1, 1, 1, 1).

Length 13: r = (0, 2, 1, 2, 2, 2),
a = (0, 0, 1, 1, 0, 0), c = (0, 0, 0, 0, 1, 1).

Length 15: α = β = γ = 1, r = (0, 0, 1, 2, 1, 3),
a = c = (0, 1, 1, 1, 1, 1, 1).

Length 17: r = (0, 0, 0, 1, 2, 0, 0, 2),
a = (0, 0, 0, 0, 0, 0, 1, 1), c = (0, 1, 1, 0, 0, 0, 0, 0).

Length 19: α = β = 1, γ = 2, r = (0, 0, 0, 0, 1, 0, 2, 2),
a = (0, 1, 1, 1, 1, 1, 1, 1, 1), c = (1, 1, 1, 1, 1, 1, 1, 1, 1).

We remark that there might be equivalent codes to the ones
presented here that would result in the same secrecy gain.

VII. CONCLUSION

We proposed odd extension codes over Z4 and studied the
secrecy gain of their respective odd extension lattices, aiming
to maximize the security against a potential eavesdropper
in a Gaussian wiretap channel. Cases, where odd extension
formally unimodular lattices outperform previous results in the
literature (in terms of unimodular lattices or upper bounds for
Type I formally unimodular lattices), were highlighted.
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