
ETH Library

The Secrecy Gain of Formally
Unimodular Lattices on the
Gaussian Wiretap Channel

Conference Paper

Author(s):
Bollauf, Maiara F.; Lin, Hsuan-Yin; Ytrehus, Øyvind

Publication date:
2022-03-02

Permanent link:
https://doi.org/10.3929/ethz-b-000535284

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000535284
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


The Secrecy Gain of Formally Unimodular Lattices
on the Gaussian Wiretap Channel

Maiara F. Bollauf, Hsuan-Yin Lin, and Øyvind Ytrehus
Simula UiB, N–5008 Bergen, Norway

Emails: {maiara, lin, oyvindy}@simula.no

Abstract—We consider lattice coding for the Gaussian wiretap
channel, where the challenge is to ensure reliable communication
between two authorized parties while preventing an eavesdropper
from learning the transmitted messages. Recently, a measure
called the secrecy function of a lattice coding scheme was proposed
as a design criterion to characterize the eavesdropper’s proba-
bility of correct decision. In this paper, the family of formally
unimodular lattices is presented and shown to possess the same
secrecy function behavior as unimodular and isodual lattices.
Based on Construction A, we provide a universal approach to
determine the secrecy gain, i.e., the maximum value of the secrecy
function, for formally unimodular lattices obtained from formally
self-dual codes. Furthermore, we show that formally unimodular
lattices can achieve higher secrecy gain than the best-known
unimodular lattices from the literature.

I. INTRODUCTION

In recent years, physical layer security based on information
theory has attracted a great deal of attention for secure appli-
cations in wireless communications in 5G and beyond (see [1]
and references therein). This line of research has evolved
from the classical wiretap channel (WTC) model introduced
by Aaron Wyner in his landmark work [2], which showed that
reliable and secure communication can be achieved simulta-
neously without the need of an additional cryptographic layer
on top of the communication protocol.

Since then, substantial research efforts have been devoted
to developing practical codes for reliable and secure data
transmission over WTCs. Among the potential candidates are
lattices, where in [3], [4] it was shown that a lattice-based coset
encoding approach can provide secure and reliable communi-
cation on the Gaussian WTC. In particular, it was shown that
for Gaussian WTC, the so-called secrecy function expressed in
terms of the theta series of a lattice (see the precise definition
in Section III) can be considered as a quality criterion of
good wiretap lattice codes: to minimize the eavesdropper’s
probability of correct decision, one needs to maximize the
secrecy function, and the corresponding maximum value is
referred to as (strong) secrecy gain.

Belfiore and Solé [5] studied unimodular lattices and
showed that their secrecy functions have a symmetry point.
The value of the secrecy function at this point is called
the weak secrecy gain. Based on this, the authors of [5]
conjectured that for unimodular lattices, the secrecy gain is
achieved at the symmetry point of its secrecy function. I.e.,
the secrecy gain of a unimodular lattice is equivalent to its
weak secrecy gain. Finding good unimodular lattices that attain

large secrecy gain is of practical importance. In [6], a novel
technique was proposed to verify or disprove the Belfiore
and Solé conjecture for a given unimodular lattice. Using this
method, the conjecture is validated for all known even extremal
unimodular lattices in dimensions less than 80. In another
work [7], the authors use a similar method as [6] to classify the
best unimodular lattices in dimensions from dimensions 8 to
23. For unimodular lattices obtained by Construction A from
binary doubly even self-dual codes up to dimensions 40, their
secrecy gains are also shown to be achieved at their symmetry
points [8].

This work first introduces a new and wider family of lattices,
referred to as formally unimodular lattices, that consists of lat-
tices having the same theta series as their dual. We then prove
that formally unimodular lattices have the same symmetry
point as unimodular or isodual lattices. Similar to the feature
of formally self-dual codes defined in coding theory, it is
expected that such a broader class of lattices can achieve higher
secrecy gain than the unimodular lattices. We pursue this
expectation via Construction A lattices obtained from formally
self-dual codes and give a universal approach to determine
their secrecy gain. For formally unimodular lattices obtained
by Construction A from even formally self-dual codes, we
also provide a sufficient condition to verify Belfiore and Solé’s
conjecture on the secrecy gain. (A code is called even if all of
its codewords have even weight, otherwise the code is odd.)

Furthermore, we present numerical evidence supporting the
conjecture of secrecy gain also for Construction A lattices
obtained from odd formally self-dual codes. For dimensions
up to 70, we note that formally unimodular lattices have
better secrecy gain than the best known unimodular lattices
described in the literature, e.g., [7]. Apart from finding good
formally self-dual codes from the literature, using the code
construction by tailbiting the rate 1/2 convolution codes [9,
App. C], we also obtain several formally self-dual codes
resulting in high secrecy gains. Due to page limitations, some
proofs and detailed discussions are omitted and can be found
in the extended version [9].

II. DEFINITIONS AND PRELIMINARIES

A. Notation

We denote by Z, Q, and R the set of integers, rationals, and
reals, respectively. Vectors are boldfaced, e.g., x. Matrices and
sets are represented by capital sans serif letters and calligraphic
uppercase letters, respectively, e.g., X and X . We use the
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customary code parameters [n, k] or [n, k, d] to denote a linear
code C of length n, dimension k, and minimum Hamming
distance d. Throughout this paper, we will focus on binary
codes only.

B. On Codes and Lattices
Let C be an [n, k] code and C⊥ ≜ {u : ⟨u,v⟩ = 0,∀v ∈

C }. The weight enumerator of a code C is given by

WC (x, y) =

n∑

w=0

Awx
n−wyw,

where Aw ≜ |{c ∈ C : wH(c) = w}|. The relation between
WC (x, y) and WC⊥(x, y) is characterized by the well-known
MacWilliams identity (see, e.g., [10, Th. 1, Ch. 5]):

WC (x, y) =
1

2n−k
WC⊥(x+ y, x− y). (1)

We have the following families of codes.
Definition 1 (Self-dual, isodual, formally self-dual codes):
• A code C is said to be self-dual if C = C⊥.
• If there is a permutation π of coordinates such that C =
π(C⊥), C is called isodual.

• A code C is formally self-dual if C and C⊥ have the
same weight enumerator, i.e., WC (x, y) =WC⊥(x, y).

Clearly, a self-dual code is also isodual, and an isodual code
is formally self-dual. Any code in these classes is an [n, n/2]
code and, by (1), its weight enumerator WC (x, y) satisfies
[10, eq. (7), p. 599]

WC (x, y) =WC

(
x+ y√

2
,
x− y√

2

)
. (2)

A (full rank) lattice Λ is a discrete additive subgroup of Rn,
which is generated as Λ = {λ = uGn×n : u = (u1, . . . , un) ∈
Zn}, where the n rows of G form a lattice basis. The volume
of Λ is vol(Λ) = |det(G)|.

If a lattice Λ have generator matrix G, then the lattice Λ⋆ ⊂
Rn generated by

(
G−1

)T
is called the dual lattice of Λ.

Remark 1: vol(Λ⋆) = vol(Λ)
−1.

For lattices, the analogue of the weight enumerator of a code
is the theta series.

Definition 2 (Theta series): Let Λ ⊂ Rn be a lattice, its
theta series is given by

ΘΛ(z) =
∑

λ∈Λ

q∥λ∥2

,

where q ≜ eiπz and Im{z} > 0.
Analogously, the spirit of the MacWilliams identity can be

captured by the Jacobi’s formula [11, eq. (19), Ch. 4]

ΘΛ(z) = vol(Λ⋆)
( i
z

)n
2

ΘΛ⋆

(
−1

z

)
. (3)

Note that sometimes the theta series of a lattice can be
expressed in terms of the Jacobi theta functions defined as
follows.

ϑ2(z) ≜
∑

m∈Z
q

(
m+ 1

2

)2
= ΘZ+ 1

2
(z),

ϑ3(z) ≜
∑

m∈Z
qm

2

= ΘZ(z), ϑ4(z) ≜
∑

m∈Z
(−q)m2

.

In lattice theory, we have similar concepts to self-dual
and isodual dual codes. Here, we also introduce formally
unimodular lattices.

Definition 3 (Unimodular, isodual, formally unimodular
lattices): A lattice Λ ⊂ Rn is said to be integral if the inner
product of any two lattice vectors is an integer.

• An integral lattice such that Λ = Λ⋆ is called unimodular
lattice.

• A lattice Λ is called isodual if it can be obtained from its
dual Λ⋆ by (possibly) a rotation or reflection.

• A lattice Λ is formally unimodular if it has the same theta
series as its dual, i.e., ΘΛ(z) = ΘΛ⋆(z).

Remark 2: The relations among unimodular, isodual, and
formally unimodular lattices are given as follows.

{
Λunimodular

}
⊂
{
Λisodual

}
⊂
{
Λformally unimodular

}
.

Proposition 1: If Λ is formally unimodular, then vol(Λ) = 1.
Consequently, unimodular, isodual, and formally unimodu-

lar lattices satisfy

ΘΛ(z) =
( i
z

)n
2

ΘΛ

(
−1

z

)
. (4)

Lattices can be constructed from linear codes through the
so called Construction A.

Definition 4 (Construction A): Let C be an [n, k] code, then

ΛA(C ) ≜ 1√
2
(ϕ(C ) + 2Zn),

is a lattice, where ϕ : Fn
2 → Rn is the natural embedding.

About Construction A lattices obtained from codes over F2,
it is known from [11, p. 183] that

• The volume is vol(ΛA(C )) = 2
n/2

|C | = 2(n−2k)/2.
• ΛA(C⊥) = ΛA(C )⋆.
A connection between the weight enumerator WC (x, y) of

a code C and a lattice ΛA(C ) can be established.
Lemma 1 ([11, Th. 3, Ch. 7]): Consider an [n, k] code C

with WC (x, y), then the theta series of ΛA(C ) is given by

ΘΛA(C )(z) =WC (ϑ3(2z), ϑ2(2z)).

Remark 3: It follows immediately from Lemma 1 that if an
[n, n/2] code C is formally self-dual then ΛA(C ) is a formally
unimodular lattice.

III. SECRECY FUNCTION OF A LATTICE

In the Gaussian WTC, the same coset encoding idea pro-
posed in Wyner’s seminal paper [2] for linear codes can be
implemented in a lattice scenario, and here we follow the
lattice coding scheme proposed in [4], [5].

In practice, two lattices Λe ⊂ Λb are considered. Λb is
designed to ensure reliability for a legitimate receiver Bob
and required to have a good Hermite parameter (that mea-
sures the highest attainable coding gain of an n-dimensional
lattice) [11]. On the other hand, Λe is aimed to increase the
eavesdropper confusion, so it should be chosen such that Pc,e,
the eavesdropper’s success probability of correctly guessing
the transmitted message, is minimized. The performance of
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the lattice Λe is measured in terms of the secrecy gain [4],
[5]; to be explained next.

Denote by σ2
e the variance of the additive Gaussian noise at

the eavesdropper’s side. Minimizing Pc,e is equivalent to [4]
minimizing

∑

r∈Λe

e−
∥r∥2/2σ2

e = ΘΛe

(
z ≜ i

2πσ2
e

)
,

subject to log2|Λb/Λe| = k. Note that Im
{
i/2πσ2

e

}
= Im{z} >

0, thus we consider only the positive values of τ ≜ −iz =
1/2πσ2

e > 0 for ΘΛe(z). Hence, the scheme is aimed at finding
a lattice Λe such that ΘΛe(z) is minimized, which motivates
the definition of secrecy function below. Note that in [12], it
is also argued that minimizing the theta series of Λe leads to
a small flatness factor, a criterion that directly relates to the
mutual information leakage to the eavesdropper, instead of the
success probability. Therefore, the optimization of ΘΛe(z) is
of interest in both scenarios.

Definition 5 (Secrecy function and secrecy gain [4, Def. 1
and 2]): Let Λ be a lattice with volume vol(Λ) = νn. The
secrecy function of Λ is defined by

ΞΛ(τ) ≜
ΘνZn(iτ)

ΘΛ(iτ)
,

for τ ≜ −iz > 0. As maximizing ΞΛ(τ) is equivalent to
minimizing ΘΛ(z), the (strong) secrecy gain of a lattice is
given by ξΛ ≜ supτ>0 ΞΛ(τ).

Ideally, the goal is to determine ξΛ. However, since the
global maximum of a secrecy function is in general not always
easy to calculate, a weaker definition is useful. We start by
defining the symmetry point.

Definition 6 (Symmetry point): A point τ0 ∈ R is said to be
a symmetry point if for all τ > 0,

Ξ(τ0 · τ) = Ξ
(τ0
τ

)
. (5)

Definition 7 (Weak secrecy gain [4, Def. 3]): If the secrecy
function of a lattice Λ has a symmetry point τ0, then the weak
secrecy gain χΛ is defined as χΛ = ΞΛ(τ0).

IV. WEAK SECRECY GAIN OF FORMALLY UNIMODULAR
LATTICES

This section shows that formally unimodular lattices also
hold the same secrecy function properties as unimodular and
isodual lattices [4].

Lemma 2: Consider a lattice Λ and its dual Λ⋆. Then,

ΞΛ(τ) = ΞΛ⋆

(1
τ

)
. (6)

A necessary and sufficient condition for a lattice Λ to
achieve the weak secrecy gain at τ = 1 is given as follows.

Theorem 1: Consider a lattice Λ with vol(Λ) = 1 and its
dual Λ⋆. Then, Λ achieves the weak secrecy gain at τ = 1, if
and only if Λ is formally unimodular.

Proof: By definition, we have

ΞΛ(τ) = ΞΛ

(1
τ

)
. (7)

Using Lemma 2, it follows from (7) and (6) that

ΞΛ

(1
τ

)
= ΞΛ(τ) = ΞΛ⋆

(1
τ

)
.

By Def. 5, this implies that ΘΛ(z) = ΘΛ⋆(z) for vol(Λ) = 1.
Conversely, from Def. 3, we see that (6) implies (7).

Note that Theorem 1 holds for isodual lattices as well, which
yields to [4, Prop. 1].

Corollary 1: Consider a lattice Λ with vol(Λ) = νn and its
dual Λ⋆. Then, Λ achieves the weak secrecy gain at τ = ν−2,
if and only if ν−1Λ is a formally unimodular lattice.

Equation (5) with τ0 = ν−2 holds for a lattice equivalent to
its dual. See [4, Prop. 2].

V. SECRECY GAIN OF FORMALLY UNIMODULAR LATTICES

Our goal in this section is to investigate the following
conjecture.

Conjecture 1: The secrecy function of a formally unimodular
lattice Λ achieves its maximum at τ = 1, i.e., ξΛ = ΞΛ(1).

Although we cannot completely prove Conjecture 1, we pro-
ceed to study the secrecy gain for formally unimodular lattices
obtained from formally self-dual codes via Construction A (see
Remark 3). Note that for linear codes, it is known that formally
self-dual codes that are not self-dual can outperform self-dual
codes in some cases, as they comprise a wider class and hence
may allow a better minimum Hamming distance or an overall
more favorable weight enumerator. This leads us to look for
improved results on the secrecy gain compared to unimodular
lattices [6]–[8].

Lemma 3: Consider a Construction A lattice ΛA(C ) ob-
tained from a formally self-dual code C . Then, its theta series
is equal to

ΘΛA(C ) =
WC

(√
ϑ23(z) + ϑ24(z),

√
ϑ23(z)− ϑ24(z)

)

2
n
2

.

Proof: Using Lemma 1 and the useful identities given
in [11, eq. (26), Ch. 4], the theta series ΘΛA(C ) becomes

ΘΛA(C )(z)

= WC (ϑ3(2z), ϑ2(2z))

(a)
= WC

(
ϑ3(2z) + ϑ2(2z)√

2
,
ϑ3(2z)− ϑ2(2z)√

2

)

= WC

(√
ϑ23(z) + ϑ24(z) +

√
ϑ23(z)− ϑ24(z)√

2
√
2

,

√
ϑ23(z) + ϑ24(z)−

√
ϑ23(z)− ϑ24(z)√

2
√
2

)

=
1

2
n
2
WC

(√
ϑ23(z) + ϑ24(z) +

√
ϑ23(z)− ϑ24(z)√

2
,

√
ϑ23(z) + ϑ24(z)−

√
ϑ23(z)− ϑ24(z)√

2

)

(b)
=

1

2
n
2
WC

(√
ϑ23(z) + ϑ24(z),

√
ϑ23(z)− ϑ24(z)

)
.

where (a) and (b) follow from (2).
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Lemma 4: Let s(τ) ≜ ϑ4(iτ)/ϑ3(iτ). Then, s(τ) is an
increasing function for τ > 0, and 0 < s(τ) < 1.

Remark 4: Let t(τ) ≜ s(τ)2. Then, 0 < t(τ) < 1 and t(τ)
is also an increasing function for τ > 0. Hence, according to
Lemma 4, given any t ∈ (0, 1), there always exists a unique
τ > 0 such that t(τ) = ϑ2

4(iτ)/ϑ2
3(iτ). Moreover, we have t(1) =

1/
√
2 by using the identity of ϑ3(i) = 21/4ϑ4(i) from [13].

Due to Remark 4, Lemma 3, and the fact that ΘZn(z) =
ϑn3 (z), now we are able to give a new universal approach
to derive the strong secrecy gain of a Construction A lattice
obtained from formally self-dual codes.

Theorem 2: Let C be a formally self-dual code. Then

[
ΞΛA(C )(τ)

]−1
=
WC

(√
1 + t(τ),

√
1− t(τ)

)

2
n
2

,

where 0 < t(τ) = ϑ2
4(iτ)/ϑ2

3(iτ) < 1. Moreover, define fC (t) ≜
WC (

√
1 + t,

√
1− t) for 0 < t < 1. Then, maximizing the

secrecy function ΞΛA(C )(τ) is equivalent to determining the
minimum of fC (t) on t ∈ (0, 1).

Example 1: Consider a [6, 3, 3] odd formally self-dual code
C with WC (x, y) = x6 + 4x3y3 + 3x2y4 [14]. Thus fC (t) =
WC (

√
1 + t,

√
1− t) = 4[1 + t3 + (1 − t2)3/2] and f ′C (t) =

12t(t −
√
1− t2). Observe that for 0 < t < 1/

√
2, we have√

1− t2 > 1/
√
2. Then, t −

√
1− t2 < 1/

√
2 − 1/

√
2 = 0.

This indicates that the derivative f ′C (t) < 0 on t ∈ (0, 1/
√
2).

Similarly, one can also show that f ′C (t) > 0 on t ∈ (1/
√
2, 1),

and t = 1/
√
2 is the minimum of fC (t). Hence, Remark 4

and Theorem 2 indicate that the maximum of ΞΛA(C )(τ) is
achieved at τ = 1. Also, one can get ξΛA(C ) ≈ 1.172. ♢

Using Gleason’s Theorem [15, Th. 9.2.1], an expression of
fC (t) can be shown if C is an even formally self-dual code.

Lemma 5: If C is an [n, n/2] even formally self-dual codes,
then we have

fC (t) = 2
n
2

⌊n
8 ⌋∑

r=0

ar(t
4 − t2 + 1)r, (8)

where ar ∈ Q and
∑⌊n

8 ⌋
r=0 ar = 1.

Next, we provide a sufficient condition for a Construction A
formally unimodular lattice obtained from even formally self-
dual codes to achieve the strong secrecy gain at τ = 1, or,
equivalently, t = 1/

√
2.

Theorem 3: Consider n ≥ 8 and an [n, n/2] even formally
self-dual code C . If the coefficients ar of fC (t) expressed in
terms of (8) satisfy

⌊n
8 ⌋∑

r=1

rar

(3
4

)r−1

> 0, (9)

then the secrecy gain of ΛA(C ) is achieved at τ = 1.
To prove this theorem, it is sufficient to show that the function
fC (t) as in (8) defined for 0 < t < 1 achieves its minimum
at t = 1/

√
2. The detailed proof is given in [9].

Example 2: Consider an [18, 9, 6] even formally self-dual
code C with

WC (x, y) = x18 + 102x12y6 + 153x10y8

+153x8y10 + 102x6y12 + y18.

By solving fC (t) = WC (
√
1 + t,

√
1− t) with (8) (see the

details of derivation provided in [9, App. B]), we find that
a0 = −29/16, a1 = 27/8 and a2 = −9/16. The condition (9) in
Theorem 3 for those coefficients is satisfied since 27/8−27/32 =
81/32 > 0. Thus, the secrecy gain conjecture is true for the
formally unimodular lattice ΛA(C ). ♢

VI. NUMERICAL RESULTS

Even though the result of Theorem 3 is restricted to formally
unimodular lattices obtained from even formally self-dual
codes, we have numerical evidence showing that Conjecture 1
also holds for formally unimodular lattices obtained from odd
formally self-dual codes. The secrecy gains of some formally
unimodular Construction A lattices obtained from (even and
odd) formally self-dual codes are summarized in Table I. Note
that all codes have the parameters [n, n/2] and the superscript
“(d)” refers to the minimum Hamming distance d of the code.
Their exact weight enumerators can be found in [9, App. D].
The highlighted values represent the best values found in the
respective dimensions, when comparing self-dual (sd), even
and odd formally self-dual (efsd and ofsd) codes.

Remark 5: We remark the following about Table I:

• “[·]” indicates the reference number.
• We use the sufficient condition (9) in Theorem 3 for the

even codes and the numerical derivative analysis with
Wolfram Mathematica [25] for the odd codes to confirm
the strong secrecy gain in Table I.

• For most dimensions n > 8, the secrecy gain of formally
unimodular lattices that are not unimodular outperform
the unimodular lattices (obtained from self-dual codes),
presented in [7, Tables I and II]. In some cases (e.g.
[12,6], [22,11]) we were unable to find good efsd codes
with different secrecy gains form the sd codes. Also, to
highlight the comparison with unimodular lattices, the
second column refers to the upper bound on the secrecy
gain of unimodular lattices obtained from Construction
A in [16, Tab. III] and not all of the values are known
to be achieved. Gains can be observed in dimensions
10, 12, 14, 20, and 22.

• It is known that the well-known Barnes-Wall lattice BW32

achieves the secrecy gain of 64/9 ≈ 7.11 [4, Sec. IV-
C], which is better than all the tabulated values in
dimension 32. However, because BW32 is not obtained
via Construction A, we did not address the details here.

• Observe that for codes of length 40, the self-dual code
in the table is a Type I (weights divisible by two), as
it presents a higher secrecy gain (ξΛA(Csd) ≈ 12.191)
compared to the Type II (weights divisible by four)
(ξΛA(Csd) ≈ 11.977). The same happens with codes of
length 32 and this confirms the advantage of this approach
as to the results in [8].

• Formally self-dual (isodual) codes without references in
Table I are constructed by tailbiting the rate 1/2 convolu-
tional codes. Details can be found in [9, App. C].
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TABLE I
COMPARISON OF (STRONG) SECRECY GAINS FOR SEVERAL VALUES OF EVEN DIMENSIONS n. CODES WITHOUT REFERENCES ARE OBTAINED BY

TAILBITING THE RATE 1/2 CONVOLUTIONAL CODES.

n Upper bound [16] C
(d)
sd ξΛA(Csd)

C
(d)
efsd ξΛA(Cefsd)

C
(d)
ofsd ξΛA(Cofsd)

6 1 − − C
(2)
efsd [15] 1 C

(3)
ofsd [14] 1.172

8 1.33 C
(4)
sd [15] 1.333 − − C

(3)
ofsd [14] 1.282

10 1.45 − − C
(4)
efsd [17] 1.455 C 4

ofsd [14] 1.478

12 1.6 C
(4)
sd [7] 1.6 C

(4)
efsd [18] 1.6 C

(4)
ofsd [14] 1.657

14 1.78 C
(4)
sd [7] 1.778 C

(4)
efsd [18] 1.825 C

(4)
ofsd [14] 1.875

16 2.21 C
(4)
sd [7] 2 C

(4)
efsd [19] 2.133 C

(5)
ofsd [14] 2.141

18 2.49 C
(4)
sd [7] 2.286 C

(6)
efsd [20] 2.485 C

(5)
ofsd 2.427

20 2.81 C
(4)
sd [7] 2.667 C

(6)
efsd [21] 2.813 C

(6)
ofsd [18] 2.868

22 3.2 C
(6)
sd [7] 3.2 C

(6)
efsd 3.2 C

(7)
ofsd [14] 3.335

30 5.84 C
(6)
sd [22] 5.697 C

(8)
efsd [23] 5.843 C

(7)
ofsd 5.785

32 7.00 C
(8)
sd [22] 6.737 C

(8)
efsd 6.748 C

(7)
ofsd 6.628

40 12.81 C
(8)
sd [22] 12.191 C

(8)
efsd 12.134 C

(9)
ofsd 12.364

70 130.15 C
(12)
sd [24] 127.712 C

(12)
efsd 128.073 C

(13)
ofsd 128.368

VII. CONCLUSION

This paper introduced the formally unimodular lattices, a
new class consisting of lattices having the same theta series as
their dual. We showed some properties of formally unimodular
lattices and their secrecy function behavior in the Gaussian
WTC. Furthermore, we investigated Construction A lattices
obtained from formally self-dual codes and gave a universal
approach to determine their secrecy gain. We found formally
unimodular lattices of better secrecy gain than the best known
unimodular lattices from the literature.
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