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Abstract

In [1], the r-wise Hamming distance for an arbitrary code (linear or nonlinear),
is presented and can be seen as a generalized notion of the pairwise Hamming
distance. Recently, in [2, Proposition 6] it was claimed that if we restrict the
interested codes to be linear codes, the minimum r-wise Hamming distance is
equivalent to the well-known sth generalized Hamming weight with s =

⌈
log2(r)

⌉
[3], but without proof. In this report, we provide a detailed proof of it.

1 Preliminaries

1.1 Notation and Definitions

We first review a conventional notation in coding theory. A general codebook C (M,n)

with M codewords and with a blocklength n is usually written as an M × n codebook
matrix as below.

C (M,n) =

 x1

...
xM

 =

c1 c2 · · · cn

, (1)

where xi, i ∈ {1, 2, . . . ,M} are row-vectors and c
(M)
j = (cj,1 · · · cj,M)T, j ∈ {1, . . . , n}

is a column-vector. Note that the M rows correspond to the M codewords.
Next, we introduce the concept of affinely independent (a.i.) vectors, which will be

used in the sequel.

Definition 1 (Affinely Independence). A set of vectors {x0,x1, . . . ,xs} is said to be
affinely independent (a.i.) if the set {x1−x0,x2−x0, . . . ,xs−x0} is linearly indepen-
dent (l.i.). The affine subspace generated by a.i. vectors {x0,x1, . . . ,xs}, denoted by
aff(x0,x1, . . . ,xs), is the set of all affine combinations of a.i. vectors {x0,x1, . . . ,xs},
which can be represented as

aff(x0,x1, . . . ,xs) ,

{
x : x =

s∑
i=0

λixi with
s∑

i=0

λi = 1

}
.

Note that since any permutation of a set of vectors {x0,x1, . . . ,xs} should result
in only one affine subspace, and hence to verify the affinely independence, one can
check the linearly independence of {x0−xi,x1−xi, . . . ,xs−xi} for any i ∈ {0, . . . , s}.
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We also remark that it can be shown that for a set of a.i. vectors {x0, . . . ,xs}, any
x ∈ aff(x0, . . . ,xs) has a unique representation

x =
s∑

i=0

λixi,
s∑

i=0

λi = 1.

1.2 Weight/Distance Functions

In this subsection, we review several distance function definitions of an arbitrary code
C (M,n) in the literature. For the sake of simplicity, we sometimes will write C aff

s =
{x0,x1, . . . ,xs} as a set of (s + 1) a.i. codewords, and Cr = {x1, . . . ,xr} simply
denotes a set of r codewords.

Definition 2 (Generalized Hamming Weight [3]). For a length-n binary vector x =
(x1 . . . xn), the support of x is the set of nonzero coordinates of x, i.e., χ(x) , {j ∈
{1, . . . , n} : xj 6= 0}. Moreover, the support of a set of vectors Cr is defined as follows.

χ(x1, . . . ,xr) ,
r⋃

i=1

χ(xi).

Denote by |I| the cardinality of a set I. The generalized Hamming weight w(Cr) of a
code is defined as the cardinality of χ(Cr), i.e., w(Cr) ,

∣∣χ(Cr)
∣∣.

Definition 3 (Generalized r-wise Hamming Distance). The generalized r-wise Ham-
ming distance d(Cr) of a set of r length-n codewords Cr written as (1) is defined as

d(Cr) = n−
∣∣{j ∈ {1, . . . , n} : cj,1 = cj,2 = · · · = cj,r}

∣∣.
Remark 4.

1. The r-wise Hamming distance di1 i2 ··· ,ir(C (M,n)) defined in [1, Def. 31] is equal to
d(Cr) for Cr = {xi1 ,xi2 , . . . ,xir}, where {i1, . . . , ir} ⊆ {1, . . . ,M}.

2. For a given Cr, d(Cr) is not necessarily equal to w(Cr), e.g., d({(0 1 0 1), (1 1 0 0)}) =
2 < w({0 1 0 1, 1 1 0 0}) = |{1, 2, 4}| = 3.

3. For any set of vectors {x0,x1, . . . ,xs},

d(x0,x1, . . . ,xs) = d(0,x1 − x0, . . . ,xs − x0) = w(x1 − x0, . . . ,xs − x0).

4. If a set of vectors {x1,x2, . . . ,xs} is l.i. for s ≥ 1, we must have

d(0,x1,x2, . . . ,xs) = d(span(x1,x2, . . . ,xs))

= w(x1,x2, . . . ,xs) and
w(span(x1,x2, . . . ,xs)) ≤ w(span(x1,x2, . . . ,xs+1)),

where span(·) represents the vector subspace spanned by a set of l.i. vectors.

M
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1.3 Minimum Generalized Hamming Distance/Weight

After defined the weight functions properly, we now begin to define the minimum metric
that we would like to compare.

Definition 5 (sth Generalized Hamming Weight [3]). The sth generalized Hamming
weight is defined as the smallest support cardinality among all possible s-dimensional
subcodes of C . I.e.,

ws(C ) , min
{
w(Ds) : Ds ⊆ C ,Ds is linear and rank(Ds) = s

}
.

Definition 6 (Minimum r-Wise Hamming Distance). The minimum r-Wise Hamming
distance d(Cr) of a code C is the minimum of all possible r-wise Hamming distances
d(Cr) for Cr ⊆ C . We denoted it by dr(C ) , min

{
d(Cr) : Cr ⊆ C

}
.

Definition 7 (Generalized s-Distance [4]). The generalized s-distance, denoted by
daffs (C ), is the minimum cardinality of the support of (s+1) a.i. codewords in C , which
is defined as daffs

(
C
)
, min

{
d(Cs) : C aff

s ⊆ C
}
.

2 Main Theorem

In order to complete the proof of [2, Proposition 6], some lemmas have to be introduced
first.

Lemma 8. Let Fn
2 denote the vector space of all length n binary vectors over the finite

field F2 , {0, 1}. Then any subset A ⊆ Fn
2 with |A| ≥ 2s−1 + 1 must contain at least

(s+ 1) a.i. vectors.

Proof. If the claim is not true, say there are only s a.i. vectors in A, denote those
a.i. vectors by S = {x0,x1, . . . ,xs−1}. Hence, by Definition 1, in Fn

2 there are at
most 2s−1 vectors that are affinely dependent to S. Thus, aff(S) can be seen as the
affine hull of A,1 and hence A ⊆ aff(S). We then have |A| ≤ 2s−1, which leads to a
contradiction.

Lemma 9. Let S = {x0,x1, . . . ,xs} ⊆ Fn
2 be a.i. If x ∈ aff(S), then we have

d(x0,x1, . . . ,xs) = d(x0,x1, . . . ,xs,x).

Proof. By definition, we have x =
∑s

i=0 λixi with
∑s

i=1 λi = 1. Therefore, if cj,0 =
cj,1 = · · · = cj,s = b ∈ {0, 1}, the jth coordinate of x, denoted by (x)j , becomes

(x)j =
s∑

i=0

λi(cj,i) = cj,i

s∑
i=0

λi = b · 1 = b.

This completes the proof (see Definition 3).

We further introduce a basic lemma in linear vector spaces.

Lemma 10. Let V be a finite-dimensional vector space with dim(V) = v, and U =
{x1,x2, . . . ,xu} be any subset of u l.i. vectors in V, then there exists {xu+1, . . . ,xv}
such that {x1,x2, . . . ,xu,xu+1, . . . ,xv} is l.i., and V = span(x1,x2, . . . ,xu,xu+1, . . . ,xv).
In other words, U is a sub-basis of V .

1The affine hull of a set is the smallest affine set containing the set.

Version 2, Hsuan-Yin Lin — 8 Jun. 2018 3



Now, we are ready to accomplish the main goal.

Theorem 11 ([2, Proposition 6]). For a given binary k-dimensional linear code Clin
with length n, we have daffs (Clin) = ws(Clin). Moreover, the minimum r-wise Hamming
distance dr for 2s−1 + 1 ≤ r ≤ 2s is equal to the generalized s-distance daffs with 1 ≤
s ≤ k. In other words,

dr(Clin) = daffs (Clin) for s = dlog2 re.

Proof. First, it is noted that every r codewords of a linear code Clin with its generator
matrix G can be written as

Cr = {x1,x2, . . . ,xr} = Ur×kGk×n.

Hence, we have

dr
(
Clin
)

= min
{
d(Cr) : Cr = Ur×kGk×n

}
≤ min{d(Cr) : Cr = Ur×kGk×n and rank(Cr) = s}
= min{d(span(x1 − x0, . . . ,xs − x0)) : l.i. {x1 − x0, . . . ,xs − x0} ⊆ Clin} (2)
= min{d(0,x1 − x0, . . . ,xs − xs) : l.i. {x1 − x0, . . . ,xs − x0} ⊆ Clin} (3)
= min{d(x0,x1, . . . ,xs) : a.i. {x0,x1, . . . ,xs} ⊆ Clin} (4)
= daffs (Clin)

= min{w(x1 − x0, . . . ,xs − x0) : l.i. {x1 − x0, . . . ,xs − x0} ⊆ Clin}
= ws(Clin) (5)

where (2) holds since rank(Cr) = s, (3) follows from the 4th remark of Remark 4, and
(4) holds from the linearity of the code.

Conversely, since

dr(Clin) = min
{
d(Cr) : Cr = Ur×kGk×n

}
= min

{
d(Cr) : a.i. {xi0 ,xi1 , . . . ,xit} ⊆ Cr = Ur×kGk×n for t ≥ s

}
(6)

= min
{
d(xi0 ,xi1 , . . . ,xit) :

a.i. {xi0 ,xi1 , . . . ,xit} ⊆ Cr = Ur×kGk×n for t ≥ s
}

(7)
= min

{
w(xi1 − xi0 , . . . ,xit − xi0) :

l.i. {xi1 − xi0 , . . . ,xit − xi0} ⊆ Cr for t ≥ s
}

(8)
= min

{
w(xj1 − xj0 , . . . ,xjs − xj0) : l.i. {xj1 − xj0 , . . . ,xjs − xj0} ⊆ Cr

}
(9)

= min
{
d(xj0 ,xj1 , . . . ,xjs) : a.i. {xj0 ,xj1 . . . ,xjs} ⊆ Cr

}
(10)

≥ daffs (Clin)

where (6) follows from Lemma 8; (7) holds since any Cr in Clin is a subset of an affine
subspace and Lemma 9 claims that in order to compute the generalized Hamming
distance of an affine subspace, it is sufficient to evaluate the generalized Hamming
distance of its a.i. vectors of the affine subspace; (9) follows from Lemma 10 and the 4th
remark of Remark 4; finally, (8) and (10) hold because of the 3rd remark of Remark 4.

Therefore, we have

daffs (Clin) = min
{
d(C aff

s ) : C aff
s ⊆ Clin} ≤ min

{
d(C aff

s ) : C aff
s ⊆ Cr ⊆ Clin

}
= dr(Clin). (11)

The proof is completed by combing the inequalities (5) and (11).
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