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Abstract—An extension from the pairwise Hamming distance
to the r-wise Hamming distance is presented. It can be used to
fully characterize the maximum-likelihood decoding (MLD) error
of an arbitrary code over the binary erasure channel (BEC).
By noting that good codes always have large minimum r-wise
Hamming distances for all r, a new design criterion for a code
is introduced: the minimum r-wise Hamming distance. We then
prove an upper bound for the minimum r-wise Hamming distance
of an arbitrary code, called the generalized Plotkin bound, and
provide a class of (nonlinear) codes that achieve the bound for
every r.

I. INTRODUCTION

It has been an important goal in coding and informa-
tion theory to design good codes working close to channel
capacity, i.e., the largest possible reliable transmission rate
over a channel. This terminology was first introduced by
Shannon in his groundbreaking paper in 1948 [1]. In principle,
under the assumption that the best decoder (i.e., a maximum
likelihood decoder) is employed, Shannon proved that, when
transmitting at a rate below capacity, a good code can achieve
an arbitrarily small error probability as long as the blocklength
is large enough. Shannon derived this result without actually
computing the actual error probability of any code. Indeed,
even for the restricted class of binary memoryless channels,
it is still difficult to evaluate the code’s exact maximum
likelihood decoding (MLD) error probability for a given fixed
blocklength. This difficulty even remains even if we restrict
ourselves to linear codes (a family of codes that exhibits a
certain linear structure), although linear codes do retain the
ability of achieving capacity. Hence, it is still unknown how
to find the best code that achieves the smallest MLD error
probability among all codes of equal size and blocklength.

As the computation of the MLD error probability is so
difficult, it is quite common to elude to the alternative criterion
of the minimum pairwise Hamming distance, which is linked
to the pairwise error probability. One then tries to find a good
code that maximizes the minimum pairwise Hamming distance
instead of minimizing the MLD error probability. Note that
it is possible to find a linear code that attains the largest
minimum pairwise Hamming distance among all (linear or
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nonlinear) codes of equal size and blocklength. Thus, from
the minimum pairwise Hamming distance point of view, it
is no loss to restrict oneself to linear codes. Unfortunately,
a code that achieves the largest minimum pairwise Hamming
distance does not necessarily achieve the smallest MLD error
probability over symmetric channels.

In this work, since any permutation of the columns of a code
is equivalent in the sense of its MLD error probability over
memoryless channels, we describe an arbitrary code (linear or
nonlinear) in terms of the types of columns in the code matrix.
This approach transforms the problem of finding the code that
achieves the smallest MLD error probability into a discrete
multivariate constrained optimization problem.

Using simple code parameters to represent a code of size M

and blocklength n, we define the family of (nonlinear) weak
flip codes by elaborately extracting a subset of all possible
code parameters, and introduce its subfamily of fair weak flip
codes that exist only for certain blocklengths. The fair weak
flip codes have some beautiful properties. For example, for
every r ≥ 2, they are guaranteed to achieve the largest mini-
mum r-wise Hamming distance among all (linear or nonlinear)
codes of equal size and blocklength (the r-wise Hamming
distance is a generalization of the pairwise Hamming distance,
see Definition 10 in Section III-A). This is in contrast to
the linear codes that do not necessarily achieve the largest
minimum r-wise Hamming distance for some r ≥ 2.

We then address codes that minimize the exact MLD error
probability over n uses of the binary erasure channel (BEC).
It is proved that these r-wise Hamming distances can be
exploited to fully characterize the exact MLD error probability
of an arbitrary code over the BEC. Using this characterization
we then succeed to show that for M = 8 the fair weak flip
code outperforms the best linear code over the BEC.1 Also for
blocklengths n ≤ 35, where no fair weak flip codes exist, a
random search indicates that always a weak flip code can be
found that beats the best linear code both in having a larger
minimum 4-wise Hamming distance and in achieving a better
MLD error probability. Thus, maximizing the minimum r-wise
Hamming distances can serve as an effective design criterion

1We use “best” here in the sense of achieving the smallest MLD error
probability among a restricted class of codes of equal size and blocklength.



for nonlinear codes.
We use the following notational conventions. Vectors are

usually row-vectors and are represented by boldface italic
Roman letters, e.g., x. However, we will slightly abuse this
convention in one special case: any vector c is a column vector.
Random quantities are denoted as upper case letters, e.g., X ,
and their deterministic counterparts are denoted as lower case
letters, e.g., x. We use Greek letters, small Romans, or a
special font, e.g., M, to denote constants. Sets are depicted
by calligraphic upper case letters, e.g., I, and the cardinality
of a set I is denoted by |I|. A codebook consisting of M

codewords of length n is called an (M, n) code and depicted
by C (M,n). If they are unambiguous from the context, we
might drop the superscripts and simply write C .

Due to page limitations, all proofs are omitted and can be
found in [2].

II. SETUP AND DEFINITIONS

A. Binary Erasure Channel (BEC)

In this work we focus on the binary erasure channel
(BEC), a discrete memoryless channel (DMC) with a binary
input alphabet X = {0, 1} and a ternary output alphabet
Y = {0, 1, 2}, and with the conditional channel law

PY |X(y|x) =
{
1− ε if y = x, x ∈ {0, 1},
ε if y = 2, x ∈ {0, 1}. (1)

Here 0 ≤ ε < 1 is called the erasure probability.

B. Column-Wise Description of General Binary Codes

An (M, n) code C (M,n) can be written as an M×n matrix
with the rows corresponding to the M codewords:

C (M,n) =




x1

...
xM


 =


c1 c2 · · · cn


. (2)

In our approach, we prefer to consider the codebook matrix
column-wise rather than row-wise [3]. We denote the length-
M column-vectors of the codebook by cj , j ∈ {1, . . . , n}.

We define a convenient numbering system for all possible
columns that can occur in such a codebook matrix.

Definition 1: For fixed M and bm ∈ {0, 1}, m ∈ M �
{1, 2, . . . ,M}, we describe the column vector (b1 b2 · · · bM)T

by its reverse binary representation of nonnegative integers
j =

∑M
m=1 bm 2M−m and write c

(M)
j � (b1 b2 · · · bM)T.

Due to the symmetry of the BEC and [2, Lem. 9], we discard
any column starting with a one, i.e., we require b1 = 0.
Moreover, as it never helps improving the performance, we
exclude the all-zero column. Hence, the set of all possible
candidate columns of general binary codes is

C(M) �
{
c
(M)
1 , c

(M)
2 , . . . , c

(M)
J

}
, (3)

where J � 2M−1 − 1. For a given codebook and for any
j ∈ J �

{
1, . . . , J

}
, let tj be the number of occurrences of

the corresponding candidate columns c
(M)
j in the codebook

matrix of C (M,n). Since the ordering of the candidate columns

is irrelevant with respect to the MLD performance of the code
on a DMC, any binary code with blocklength n =

∑J
j=1 tj

can therefore be fully described by the parameter vector

t �
[
t1, t2, . . . , tJ

]
. (4)

We say that such a code has a type vector (or simply type) t,
and write C

(M,n)
t1,...,tJ or C

(M,n)
t .

More details about the column-wise description of binary
codes can be found in [2, Sec. II.C].

C. Weak Flip Codes

Definition 2: Given an integer M ≥ 2, a length-M candidate
column is called a weak flip column and denoted c

(M)
weak if its

first component is 0 and its Hamming weight equals
⌊
M
2

⌋
or⌈

M
2

⌉
. The collection of all possible weak flip columns is called

weak flip candidate columns set and is denoted by C(M)
weak .

We see that a weak flip column contains an almost equal or
equal number of zeros and ones. We introduce the following
shorthands:

�̄ �
⌈
M

2

⌉
, � �

⌊
M

2

⌋
, L �

(
2�̄− 1

�̄

)
. (5)

Definition 3: A weak flip code C
(M,n)
weak contains only weak

flip columns in its codebook matrix. Since all positions cor-
responding to nonweak flip columns are zero, the type vector
(4) can be reduced to a reduced type vector:

tweak �
[
tj1 , tj2 , . . . , tjL

]
, (6)

where
∑L

w=1 tjw = n with jw being the reverse binary
representation of the corresponding weak flip column.

As an example, for M = 4 we have tweak = [t3, t5, t6].
Note that the number of weak flip columns is increasing
exponentially fast; e.g., for M = 5, we already have ten weak
flip columns.

Next, we introduce the subclass of fair weak flip codes.
Definition 4: A weak flip code is called fair if it is

constructed by an equal number of all possible weak flip
columns in C(M)

weak . Note that by definition the blocklength of a
fair weak flip code is always an integer multiple of L.

Fair weak flip codes have been used by Shannon et al. [4]
for the derivation of error exponents, although the codes were
not named at that time. Note that in [4] the error exponents
are defined when blocklength n tends to infinity, but here we
consider finite n. For more details and properties we refer to
[2, Sec. IV.B].

D. Linear Codes

In conventional coding theory, linear codes constitute an
important and well-known class of error correcting codes that
have been shown to possess powerful algebraic properties
(e.g., see [5], [6]). We focus briefly on certain properties of
linear codes that are important in the context of this work.

We start by categorizing linear codes as a special case of
weak flip codes.

Proposition 5: Every linear code is a weak flip code.



Note that linear codes only exist if M = 2k, while weak flip
codes are defined for any M. Also note that the converse of
Proposition 5 does not necessarily hold, i.e., even if M = 2k

for some k ∈ N � {1, 2, 3, . . .}, a weak flip code C (M,n) is
not necessarily linear.

We next investigate linear codes from a column-wise per-
spective. The goal here is to define fair linear codes. As
a vector subspace, linear codes are usually represented by
a generator matrix Gk×n. We can apply our column-wise
point-of-view to the construction of generator matrices.2 The
generator matrix Gk×n consists of n column vectors cj of
length k similar to (2). Note that in the generator matrix the
all-zero column is useless and is therefore excluded. Thus there
are totally K � 2k − 1 = M − 1 possible candidate columns
for Gk×n: c

(k)
j � (b1 b2 · · · bk)

T, where j =
∑k

i=1 bi 2
k−i

and where b1 is not necessarily equal to zero. Let UT
k be an

auxiliary k × K matrix consisting of all possible K candidate
columns for the generator matrix: UT

k =
(
c
(k)
1 · · · c

(k)
K

)
.

This matrix UT
k then allows us to create the set C(M)

lin of all
possible length-M candidate columns of length M = 2k for
the codebook matrix of a binary linear code with M = 2k

codewords.
Lemma 6: Given a dimension k, the candidate columns set

C(M)
lin for linear codes is given by the columns of the M ×

(M − 1) matrix
(

0
Uk

)
UT
k, where 0 denotes an all-zero row

vector of length k.
Thus, the codebook matrix of any linear code can be

represented by
(

0
Uk

)
Gk×n, which consists of columns taken

only from C(M)
lin . Since in its type, all positions corresponding

to candidate columns not in C(M)
lin are zero, we can again use

a reduced type vector to describe a k-dimensional linear code:

tlin �
[
tj1 , tj2 , . . . , tjK

]
, (7)

where
∑K

�=1 tj� = n with j� being the reverse binary repre-
sentation of the corresponding weak flip column.

Definition 7: A linear code is called fair if its codebook
matrix is constructed by an equal number of all possible
candidate columns in C(M)

lin . Hence the blocklength of a fair
linear code3 C

(M,n)
lin,fair is always a multiple of K = M− 1.

Example 8: Consider the fair linear code with dimension
k = 3 and blocklength n = K = 7:

C
(8,7)
lin,fair =

(
0
U3

)
UT
3 =




0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1




(8)

2The authors in [7] have also used this approach to exhaustively examine
all possible linear codes.

3We point out that a fair linear code actually is a binary simplex code [6,
Ch. 1]. However, to remain synchronized with the description of fair weak
flip codes, we will stick to the name fair linear codes throughout this paper.

with the corresponding reduced type vector

tlin = [t85, t51, t102, t15, t90, t60, t105] = [1, 1, 1, 1, 1, 1, 1]. (9)

Note that the fair linear code with k = 3 and n = 7 is an (8, 7)
Hadamard linear code with all pairwise Hamming distances
equal to 4 [6, Ch. 2]. ♦

III. COLUMN-WISE ANALYSIS OF CODES

A. r-Wise Hamming Distance

The minimum pairwise Hamming distance is a well-known
and widely used quality criterion of a code. Unfortunately,
a design solely based on the minimum pairwise Hamming
distance can be strictly suboptimal even for a very symmetric
channel like the binary symmetric channel (BSC) and even
for linear codes [3], [8]. We will therefore next provide an
extension of the pairwise Hamming distance: the so-called
r-wise Hamming distance of a code. We will see that this
generalization (in combination with the type vector t) allows
a precise formulation of the exact MLD error probability of a
code over the BEC.

Definition 9 (r-Wise Hamming Distance): For a given gen-
eral code C (M,n) and an arbitrary integer r ∈ {2, . . . ,M}, we
fix some integers 1 ≤ i1 < i2 < · · · < ir ≤ M. The r-wise
Hamming distance di1 i2 ··· ir

(
C (M,n)

)
is defined as

di1 i2 ··· ir
(
C (M,n)

)
� n− ai1 ir ··· ir

(
C (M,n)

)
, (10)

where

ai1 i2 ··· ir
(
C (M,n)

)
�
∣∣{j ∈ {1, . . . , n} : cj,i1 = cj,i2 = · · · = cj,ir}

∣∣, (11)

and cj,i� is the i�th component of the jth candidate column
c
(M)
j as given in Definition 1.
It is straightforward to verify that the 2-wise Hamming

distances are identical to the pairwise Hamming distances.
The r-wise Hamming distances can be written elegantly

with the help of the type vector:

di1 i2 ··· ir
(
C

(M,n)
t

)
= n−

∑
j∈J s.t.

cj,i1=cj,i2=···=cj,ir

tj , (12)

where 1 ≤ i1 < i2 < · · · < ir ≤ M. Here tj denotes the jth
component of the type vector t of length J = 2M−1 − 1.

When the considered type-t code is unambiguous from the
context, we will usually omit the explicit specification of the
code and abbreviate (10) as d

(M,n)
i1 i2 ··· ir or, even shorter, as

d
(M,n)
I for some given I = {i1, i2, . . . , ir}.
The definition of the r-wise Hamming distances leads to a

natural extension of the minimum pairwise Hamming distance.
Definition 10 (Minimum r-Wise Hamming Distance): For a

given r ∈ {2, . . . ,M}, the minimum r-wise Hamming distance
dmin;r of a code C (M,n) is defined as the minimum of all
possible r-wise Hamming distances of this (M, n) code:

dmin;r
(
C (M,n)

)
� min

I⊆{1,...,M} : |I|=r
dI
(
C (M,n)

)
, (13)



where the minimization is taken over all size-r subsets I ⊆
{1, . . . ,M}.

Recall that in traditional coding theory, it is customary
to specify a code with three parameters (M, n, dmin), where
the third parameter specifies the minimum pairwise Hamming
distance. We follow this tradition but replace the minimum
pairwise Hamming distance by a vector containing all mini-
mum r-wise Hamming distances for r = 2, . . . , �̄ � �M/2�:

dmin �
(
dmin;2, dmin;3, . . . , dmin;�̄). (14)

Note that we restrict ourselves to r ≤ �̄ because for weak flip
codes the minimum r-wise Hamming distance is equal to n
for �̄ < r ≤ M; see the discussion after Theorem 13 below.

Example 11: We continue with Example 8. The fair linear
code with k = 3 and n = 7 given in (8) is an (8, 7,dmin)
Hadamard linear code with dmin = (4, 6, 6). Similarly, the
fair linear code with k = 3 and n = 35 that is created
by concatenating the codebook matrix (8) five times is an(
8, 35, (20, 30, 30)

)
Hadamard linear code. Both codes are

obviously not fair weak flip codes. Later in Theorem 14 we
will show that the fair weak flip code with M = 8 codewords
is actually an

(
8, 35, (20, 30, 34)

)
code. ♦

Following the classical definition of an equidistant code,
i.e., a code whose pairwise Hamming distance between all
codewords is the same, we define r-wise equidistant codes.

Definition 12 (r-Wise Equidistant Codes): For a given
integer r ∈ {2, . . . ,M}, an (M, n) code C (M,n) is called
r-wise equidistant if all r-wise Hamming distances are equal,
i.e., if for all choices of integers 1 ≤ i1 < i2 < · · · < ir ≤ M,
di1···ir

(
C (M,n)

)
= constant.

B. Generalized Plotkin Bound for r-Wise Hamming Distances

The r-wise Hamming distance (together with the type vector
t) plays an important role in the closed-form expression of the
MLD error probability for an arbitrary code C

(M,n)
t over the

BEC. It is therefore interesting to find some bounds on the r-
wise Hamming distance. We start with a generalization of the
Plotkin bound for the minimum pairwise Hamming distance
to the situation of the minimum r-wise Hamming distance.

Theorem 13 (Plotkin Bound for Minimum r-wise Hamming
Distances): For some r ∈ {2, . . . ,M}, the minimum r-wise
Hamming distance of an (M, n) binary code satisfies

dmin;r
(
C (M,n)

) ≤

n

(
1− (�̄−1

r−1)
(2�̄−1

r−1 )

)
if 2 ≤ r ≤ �̄,

n if �̄ < r ≤ M.
(15)

The above theorem only provides absorbing bounds to the
r-wise Hamming distance for 2 ≤ r ≤ �̄, while further
increasing the parameter r only renders trivially dmin;r ≤ n.
Since the minimum r-wise Hamming distance of a weak flip
code for r > �̄ is always equal to this trivial bound n and
therefore is irrelevant for the exact MLD error performance
over the BEC, the vector (14) contains the minimum r-wise
Hamming distances for 2 ≤ r ≤ �̄ only.

It is well-known that Hadamard codes achieve the Plotkin
bound with equality, i.e., they achieve the largest minimum

pairwise or 2-wise Hamming distance [6, Ch. 2]. Moreover,
Hadamard codes are also pairwise equidistant. In the following
we will investigate generalizations of these two properties for
weak flip codes.

Theorem 14: Fix some M, a blocklength n with n mod L =
0, and some r ∈ {2, . . . , �̄}. Then if a weak flip code is r-wise
equidistant, then it is also s-wise equidistant for all 2 ≤ s < r.
Moreover, if this r-wise equidistant weak flip code C

(M,n)
equidist

achieves the generalized Plotkin bound, i.e., it satisfies

dmin;r

(
C

(M,n)
equidist

)
= n ·

(
1−

(
�̄−1
r−1

)
(
2�̄−1
r−1

)
)
, (16)

then C
(M,n)
equidist must also achieve the largest minimum s-wise

Hamming distances for all 2 ≤ s < r.
The following corollary can be obtained from Theorem 14.
Corollary 15: The fair weak flip code C

(M,n)
fair achieves the

largest minimum r-wise Hamming distance for all 2 ≤ r ≤ �̄
among all (M, n) codes.

We make the following remark to Corollary 15: The fair
linear code always meets the Plotkin bound for the 2-wise
Hamming distance; however, in contrast to the fair weak flip
code C

(M,n)
fair , it does not necessarily meet the Plotkin bound

for r-wise Hamming distances for r > 2. This gives rise to
our conjecture that a fair linear code performs strictly worse
than the optimal fair weak flip code even if it is the best linear
code with the smallest MLD error probability over the BEC.
More evidence for this claim will be given in Section IV-B.

IV. PERFORMANCE ANALYSIS OVER THE BEC

In Section II-B we have shown that any codebook can be
described by the type vector t. Therefore the minimization of
the MLD error probability among all possible codebooks is
transformed into an optimization problem on the discrete vec-
tor t, subject to the condition that

∑J
j=1 tj = n. Consequently,

the r-wise Hamming distance and the properties of the type
vector play an important role in our analysis.

A. Exact MLD Error Probability of a Code over the BEC

In terms of r-wise Hamming distances, we are able to give
a closed-form expression for the exact MLD error probability
of an arbitrary code C

(M,n)
t used on the BEC.

Theorem 16 (MLD Error Probability on the BEC): Consider
the BEC with erasure probability 0 ≤ ε < 1 and an arbitrary
code C

(M,n)
t with M ≥ 2. Its MLD error probability can be

expressed using the type vector t as follows:

Pe

(
C

(M,n)
t

)
=

1

M

M∑
r=2

(−1)r
∑

I⊆{1,...,M} :
|I|=r

εd
(M,n)
I , (17)

where d
(M,n)
I denotes the r-wise Hamming distance as given

in Definition 9.



Table I
THE MINIMUM r-WISE HAMMING DISTANCES OF THE NUMERICALLY FOUND WEAK FLIP CODE AND THE BEST LINEAR CODE WITH M = 8.

n 8 10 12 14 16 18 20 21 22 24 26 28 30 32 34 35
t�weakt

∗
lin t�weakt

∗
lin t�weakt

∗
lin t�weakt

∗
lin t�weakt

∗
lin t�weakt

∗
lin t�weakt

∗
lin t�weakt

∗
lin t�weakt

∗
lin t�weakt

∗
lin t�weakt

∗
lin t�weakt

∗
lin t�weakt

∗
lin t�weakt

∗
lin t�weakt

∗
lin t�weakt

∗
lin

dmin;2 4 4 5 5 6 6 8 8 8 8 10 10 11 11 12 12 12 12 13 13 14 14 16 16 16 16 18 18 19 19 20 20

dmin;3 6 6 8 8 10 10 12 12 13 13 15 15 17 17 18 18 18 18 20 20 22 22 24 24 25 25 27 27 29 29 30 30

dmin;4 7 6 9 8 11 10 13 12 15 13 17 15 19 17 20 18 21 18 23 20 25 22 27 24 29 25 31 27 33 29 34 30

B. Linear vs. Nonlinear Codes: Comparisons for M = 8

In this section we will compare linear codes with nonlinear
weak flip codes for M = 8. We will see that the best
linear codes (with the smallest MLD error probability among
all linear codes) are strictly suboptimal in all cases that we
examine. This further substantiates the superiority of our
proposed weak flip codes over the widely used linear codes.

Theorem 17: For n mod 7 = 0 except for n = 7, the fair
linear code with M = 8 codewords is strictly suboptimal over
the BEC.

It is interesting that for M = 8 and for all blocklengths
n mod 35 = 0, both the fair linear code and the fair weak
flip code are 2-wise and 3-wise equidistant and both achieve
the 2-wise and the 3-wise Plotkin bounds. However, only the
fair weak flip code is also 4-wise equidistant and achieves the
4-wise Plotkin bound.

We conjecture that the fair weak flip code is globally
optimal in the sense of minimizing the MLD error probability
and actually show that the so-called generalized fair weak
flip codes (see [2, App. C]) outperform the best linear codes
for M = 8. For blocklengths n mod L �= 0, the situation
is in general unclear because the optimal discrete solution
to the “fair noninteger” distribution among all weak flip
columns might even end up with nonweak flip columns (see
[2, Conj. 55]). Still, we have numerical evidence that the best
found weak flip codes are superior to the best linear codes.
We next elaborate on this numerically.

For M = 8 and for any blocklength n ≤ 35, the best linear
codes of type t∗lin are found by an exhaustive search over all
possible linear code parameters tlin. Unfortunately, the same
approach does not work for the weak flip codes, because the
exhaustive search that varies over 35 weak flip columns results
in a numerically unmanageable complexity. Instead, we use a
simulated annealing algorithm [9] to determine a “good” weak
flip code type t�weak (which therefore is not guaranteed to be
optimal). The simulated annealing algorithm we use is briefly
summarized in [2, Sec. V.G.1].

Table I lists the resulting minimum r-wise Hamming dis-
tances for r = 2, 3, 4 for both t∗lin and t�weak for all even n
and for all n being a multiple of 7, where 8 ≤ n ≤ 35. Note
that for n ≤ 7, t�weak is equivalent to t∗lin. We observe that
dmin;4 increases as n grows and that the best weak flip code
always has a larger minimum 4-wise Hamming distance and
strictly outperforms the best linear code over the BEC. This
is consistent with Theorem 17.

Finally, we remark that the same insights still hold true

when we increase the number of codewords to M = 16 (see
[2, Table II]), i.e., the numerically found (nonlinear) weak flip
codes are superior to the corresponding best linear codes.

V. CONCLUSION

In this paper, a column-wise description of codes is em-
ployed to define the family of weak flip codes that include
the special classes of the linear codes and the fair weak
flip codes. The r-wise Hamming distance is proposed as an
extension to the pairwise Hamming distance. Moreover, we
derive a Plotkin-type bound on the r-wise Hamming distances
for binary codes. It is then shown that the r-wise Hamming
distances have an important application as a mean to express
the exact MLD error probability of a code over the BEC. We
prove that in contrast to linear codes, the fair weak flip codes
achieve the largest minimum r-wise Hamming distance among
all codes of equal size and blocklength for every r ≥ 2.
Finally, a numerical study for M = 8 shows that we can
find nonlinear weak flip codes that have a larger minimum 4-
wise Hamming distance than the best linear codes, indicating
that linear codes are strictly suboptimal with regard to MLD
performance over the BEC.
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