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Weak Flip Codes and their Optimality
on the Binary Erasure Channel
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Abstract— This paper investigates fundamental properties of
nonlinear binary codes by looking at the codebook matrix not
row-wise (codewords), but column-wise. The family of weak
flip codes is presented and shown to contain many beautiful
properties. In particular the subfamily fair weak flip codes, which
goes back to Shannon et al. and which was shown to achieve
the error exponent with a fixed number of codewords M, can
be seen as a generalization of linear codes to an arbitrary
number of codewords. The fair weak flip codes are related to
binary nonlinear Hadamard codes. Based on the column-wise
approach to the codebook matrix, the r-wise Hamming distance
is introduced as a generalization to the well-known and widely
used (pairwise) Hamming distance. It is shown that the minimum
r-wise Hamming distance satisfies a generalized r-wise Plotkin
bound. The r-wise Hamming distance structure of the nonlinear
fair weak flip codes is analyzed and shown to be superior to
many codes. In particular, it is proven that the fair weak flip
codes achieve the r-wise Plotkin bound with equality for all r .
In the second part of this paper, these insights are applied to
a binary erasure channel with an arbitrary erasure probability
0 < δ < 1. An exact formula for the average error probability of
an arbitrary (linear or nonlinear) code using maximum likelihood
decoding is derived and shown to be expressible using only the
r-wise Hamming distance structure of the code. For a number of
codewords M satisfying M ≤ 4 and an arbitrary finite blocklength
n, the globally optimal codes (in the sense of minimizing the
average error probability) are found. For M = 5 or M = 6
and an arbitrary finite blocklength n, the optimal codes are
conjectured. For larger M, observations regarding the optimal
design are presented, e.g., that good codes have a large r-wise
Hamming distance structure for all r . Numerical results validate
our code design criteria and show the superiority of our best
found nonlinear weak flip codes compared with the best linear
codes.
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I. INTRODUCTION

AGOAL in traditional coding theory is to find good codes
that operate close to the ultimate limit of the channel

capacity as introduced by Shannon [1]. Implicitly, by the
definition of capacity, such codes are expected to have a large
blocklength. Moreover, due to the potential simplifications
and because such codes behave well for large blocklength,
conventional coding theory often restricts itself to linear codes.
It is also quite common to use the minimum Hamming distance
and the weight enumerating function (WEF) as a design and
quality criterion [2]. This is motivated by the equivalence of
Hamming weight and Hamming distance for linear codes, and
by the union bound that converts the global error probability
into pairwise error probabilities.

In this work we would like to break away from these
traditional simplifications and instead focus on an optimal1

design of codes for finite blocklength. Since for very short
blocklength it is not realistic to transmit large quantities of
information, we start by looking at codes with only a few
codewords, so called ultrasmall block codes. Such codes have
many practical applications. For example, in the situation of
establishing an initial connection in a wireless link, the amount
of information that needs to be transmitted during the setup of
the link is limited to usually only a couple of bits. However,
these bits need to be transmitted in very short time (e.g.,
blocklength in the range of n = 20 to n = 30) with the highest
possible reliability [3]. Similarly, in the context of 5G wireless
communication systems, very reliable codes with very low
latency are asked for, which can only be found by restricting
oneself to short packets [4].

Also in the area of distributed storage data systems good
nonlinear codes are of great interest. Here the nonlinear code
constructions presented in this work offer a way to nonlinear
code designs that are better compared to the best linear codes
of identical given parameters [5].

Another important application of short codes appears in
the context of “biological coding”, where future digital
information storage system designs are attempted based on
DNA or DNA-related methods to store data. To that goal

1By optimal we always mean minimizing error probability.

0018-9448 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8030-1919
https://orcid.org/0000-0003-4833-8679


5192 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

very short and simple codes are needed to provide local
data integrity. While first architectures relied on a single-
parity check code, more advanced systems try more elaborate
schemes like simple Reed-Solomon codes [6]–[9]. The code
designs presented in this work have the potential to further
improve the performance of such systems.

We also would like to mention the emerging field of mole-
cular communication, where short messages are transmitted
with the help of molecules that are transported by diffusion.
Inherently, in such systems neither the blocklength and nor the
number of codewords can be large [10].

Finally, quantum coding is a very strongly growing research
area where people are looking for very short codes. So far
in that field only some heuristically chosen codes have been
applied, thus, a fundamentally new and more systematic way
of trying to find good codes is needed. The code designs
presented in this paper are very good candidates for such a
new approach [11].

While conventional coding theory in the sense of Shannon
theory often focuses on stating important fundamental insights
and properties like, e.g., at what rates it is possible to transmit
information with an error probability that vanishes as the
blocklength tends to infinity, we specifically turn our attention
to the concrete code design, i.e., we are interested in actually
finding a globally optimum code for a certain given channel
and a given fixed blocklength.

In this paper, we reintroduce a class of codes, called fair
weak flip codes, that have many beautiful properties similar
to those of binary linear codes. However, while binary linear
codes are very much limited since they can only exist if the
number of codewords M happens to be an integer-power of 2,
our class of codes exists for arbitrary2 M. We will investigate
these “quasi-linear” codes and show that they satisfy the
Plotkin bound.

Fair weak flip codes are related to a class of binary nonlinear
codes that are constructed with the help of Hadamard matrices
and Levenshtein’s theorem [12, Ch. 2]. These binary nonlinear
Hadamard codes also meet the Plotkin bound. As a matter of
fact, if for the parameters (M, n) of a given fair weak flip
code there exists a Hadamard code, then these two codes are
equivalent.3 In this sense we can consider the fair weak flip
codes to be a subclass of Hadamard codes. Note, however,
that there is no guarantee that for every choice of parameters
(M, n) for which fair weak flip codes exist, there also exists
a corresponding Hadamard code.

Moreover, note that while Levenshtein’s method is only con-
cerned with an optimal pairwise Hamming distance structure,
we will show that fair weak flip codes are globally optimal
(i.e., they are the best with respect to error probability and not
only to pairwise Hamming distance, and they are best among
all codes, linear or nonlinear). We prove this global optimality
in the case of the number of codewords M ≤ 4, and conjecture
it for M ≥ 5.

We introduce a generalization to the Hamming distance,
the r-wise Hamming distance, and we prove that the exact

2Note that fair weak flip codes do not exist for all blocklengths n.
3For a precise definition of equivalence see Remark 8 below.

average error probability of an arbitrary binary code on the
binary erasure channel (BEC) can be fully characterized using
the r -wise Hamming distances only. Furthermore, we propose
a Plotkin-type bound on the r -wise Hamming distances for
binary codes.

Our definition of the r -wise Hamming distance is related
to the r th generalized Hamming weight introduced in [13]
and used, e.g., to investigate a code’s security performance
on the wire-tap channel of Type II. Note, however, that [13]
restricts itself to linear codes only. Indeed, the r th generalized
Hamming weight is defined by the minimum support of any
r -dimensional subcode of a given linear code of dimension k
(where a support of a linear code is defined as the number
of positions where not all codewords are zero), and thus only
describes subsets of codewords that form a linear subcode.
On the other hand, our r -wise Hamming distance is defined
for linear and nonlinear codes and characterizes the relation
of any subset of r codewords. Since an arbitrary subset of
codewords from a linear code can be either linear or nonlinear,
this leads to an essential distinction of our work from previous
works [14]–[16].

We further define a class of codes called weak flip codes
that contains the fair weak flip codes as a special case.
We prove that some particular weak flip codes are optimal
for the BEC for M ≤ 4 and for any finite blocklength n. For
M ≥ 5, we believe that for certain blocklengths the codes
which maximize all the minimum r -wise Hamming distances
(including the pairwise Hamming distance) are best among all
possible codes. Evidence for this claim will be presented for
the cases of M = 8 and M = 16. Based on random search,
two algorithms are proposed that find nonlinear weak flip code
designs that outperform the best linear codes for certain values
of M and many blocklengths n.

This work is an extension of our previous work [17] and of
[18] and [19], where we study ultrasmall block codes for the
situation of general binary-input binary-output channels and
where we derive the optimal code design for the two special
cases of the Z-channel (ZC) and the binary symmetric channel
(BSC). We will also briefly compare our findings here with
these channels, especially with the symmetric BSC.

The foundations of our insights lie in a powerful way of
creating and analyzing both linear and nonlinear block codes.
As is customary, we use the codebook matrix containing
the codewords in its rows to describe our codes.4 However,
for our code construction and performance analysis, we are
looking at this codebook matrix not row-wise, but column-
wise. All our proofs and also our definitions of the new r -wise
Hamming distance and the “quasi-linear” codes are fully based
on this new approach. (This is another fundamental difference
between our results and the binary nonlinear Hadamard codes
that are constructed based on Hadamard matrices and Leven-
shtein’s theorem [12].)

The remainder of this paper is structured as follows. After
some comments about our notation, we will present the basic
setup of this work in Section II: We review some common

4The codebook matrix is not to be confused with a generator matrix that
can be used to describe linear codes.
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definitions in coding, introduce the channel model, and we
explain our concept of the column-wise description of general
binary codes. We also define several families of binary codes:
the family of weak flip codes including its subfamily of fair
weak flip codes, the binary Hadamard codes, and the family of
binary linear codes. Section III then reviews previous results
related to this work. The main results of the paper are summa-
rized and discussed in Sections IV and V: Section IV provides
the definition of the r -wise Hamming distance and discusses
the quasi-linear properties of weak flip codes, and in Section V
the optimal codes and the best nonlinear codes for the BEC
are presented. We conclude in Section VI. Some of the lengthy
proofs from Section V are postponed to the appendix.

As a convention in coding theory, vectors (denoted by
boldface Roman letters, e.g., x) are row-vectors. However,
for simplicity of notation and to avoid a large number of
transpose-signs, we slightly misuse this notational convention
for one special case: any vector c is a column-vector. It should
be always clear from the context because these vectors are used
to build codebook matrices and are therefore also conceptually
quite different from the transmitted codeword x or the received
sequence y.

Moreover, we use a bar x̄ to denote the flipped version of
x, i.e., x̄ � x⊕ 1 (where ⊕ denotes the componentwise XOR
operation and where 1 is the all-one vector). We use capital
letters for random quantities, e.g., X , and small letters for their
deterministic counterparts, e.g., x ; constants are depicted by
Greek letters, small Romans, or a special font, e.g., M; sets
are denoted by calligraphic letters, e.g., M; and |M| denotes
the cardinality of the set M.

II. SETUP AND DEFINITIONS

A. Coding Schemes

Definition 1: An (M, n) coding scheme for a discrete mem-
oryless channel (DMC) (X ,Y, PY |X ) consists of the message
set M � {1, 2, . . . ,M}, a codebook C (M,n) with M length-
n codewords xm = (xm,1, xm,2, . . . , xm,n) ∈ X n , m ∈ M,
an encoder that maps every message m into its corresponding
codeword xm , and a decoder that makes a decoding decision
g(y) ∈M for every received n-vector y ∈ Yn .

The set of codewords C (M,n) is called (M, n) code-
book or simply (M, n) code. Sometimes we follow the cus-
tom of traditional coding theory and use three parameters5:
(M, n, d) code, where the third parameter d denotes the
minimum Hamming distance6 dmin

(
C (M,n)), i.e., the minimum

number of components in which any two codewords differ.
We assume that the M possible messages are equally likely

and g is the maximum likelihood (ML) decoder7

g(y) � argmax
1≤m≤M

PY|X(y|xm) (1)

5Actually, it is usual to have them ordered as (n,M, d), but for consistency
and because M is the more important parameter, we will stick to (M, n) or
(M, n, d).

6For a definition of Hamming distance see Definition 6 below.
7Under the assumption of equally likely messages, the ML decoding rule is

equivalent to the maximum a posteriori (MAP) decoding rule, i.e., for a given
code and DMC, it minimizes the average error probability (as defined in (9))
among all possible decoders.

where in case that there are several m achieving the maximum,
an arbitrary one of them is chosen.

Definition 2: For a given code C (M,n) we define the decod-
ing region D(M,n)

m corresponding to the mth codeword xm as

D(M,n)
m � {y : g(y) = m}. (2)

Note that in Definition 2, all decoding regions must be
disjoint, and their union must be equal to Yn

D(M,n)
m ∩D(M,n)

m� = ∅, 1 ≤ m < m� ≤ M (3)
⋃

m∈M
D(M,n)

m = Yn . (4)

As mentioned above, there does not necessarily exist a unique
m such that for a given y,

PY|X(y|xm) = max
1≤m�≤M

PY|X(y|xm�) (5)

i.e., certain received vectors y could be assigned to different
decoding regions without changing the performance of the
coding scheme. In the following we define closed decoding
regions that break the condition (3).

Definition 3: The closed decoding region D
(M,n)
m corre-

sponding to the mth codeword xm is defined as

D
(M,n)
m �

{
y : PY|X(y|xm) = max

1≤m�≤M
PY|X(y|x�m)

}
,

m ∈M. (6)

Note that D(M,n)
m ⊆ D

(M,n)
m .

Definition 4: For an (M, n) code, given that message m
(and hence the mth codeword xm) has been sent, we define λm

to be the corresponding probability of a decoding error under
the ML decoder g:

λm
(
C (M,n)) � Pr [g(Y) 
= m |X = xm] (7)

=
∑

y/∈D(M,n)
m

PY|X(y|xm). (8)

The average error probability Pe of an (M, n) code is defined
as

Pe
(
C (M,n)) � 1

M

M∑

m=1

λm
(
C (M,n)). (9)

Sometimes it will be more convenient to focus on the prob-
ability of not making any error, denoted success probability
ψm :

ψm
(
C (M,n)) � Pr [g(Y) = m |X = xm] (10)

=
∑

y∈D(M,n)
m

PY|X(y|xm) (11)

= Pr
[
Y ∈ D(M,n)

m

∣∣X = xm
]
. (12)

The definition of the average success probability8 Pc follows
accordingly.

Our ultimate goal is to find the structure of a code that
minimizes the average error probability among all codes based
on the ML decoding rule.

8The subscript “c” stands for “correct.”
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Fig. 1. The binary erasure channel (BEC) with erasure probability δ. The
channel output 2 corresponds to an erasure.

Definition 5: A code C (M,n) is called optimal and denoted
by C (M,n)∗ if

Pe
(
C (M,n)∗) ≤ Pe

(
C (M,n)) (13)

for any (linear or nonlinear) code C (M,n).

B. The BEC and Its Average Error Probability

Regarding a channel model, this work focuses on the well-
known binary erasure channel (BEC) given in Figure 1. The
BEC is a DMC with a binary input alphabet X = {0, 1} and a
ternary output alphabet Y = {0, 1, 2}, and with a conditional
channel law

PY |X (y|x) =
{

1− δ if y = x, x ∈ {0, 1}
δ if y = 2, x ∈ {0, 1}. (14)

Here 0 ≤ δ < 1 is called the erasure probability.
While the focus lies on the BEC, we will sometimes briefly

compare our results with the situation of the binary symmetric
channel (BSC), particularly in view of [19].

Next we derive a closed-form expression for the average
error probability of an arbitrary code used over the BEC,
assuming uniformly distributed messages and an optimal ML
decoder. To that goal we need the following two definitions.

Definition 6: The Hamming distance dH(xm, xm�) between
two binary length-n vectors xm and xm� is defined as the
number of positions j where xm, j 
= xm�, j . The Hamming
weight of a binary length-n vector x is defined as wH(x) �
dH(x, 0).

Definition 7: By N(α|y) we denote the number of occur-
rences of a symbol α ∈ Y in a received vector y, and
I(α|y) is defined as the set of indices j such that y j = α.
Thus, N(α|y) = |I(α|y)|. Moreover, we use xm,I(α|y) (respec-
tively, yI(α|y)) to describe a vector of length N(α|y) containing
the components xm, j (respectively, y j ) where j ∈ I(α|y).
We also write xm,I(α|y)∪xm,I(Y\{α}|y) for the complete vector
xm , where the “union”-operation implicitly reorders the indices
in the usual ascending order.

The error probability when transmitting uniformly picked
codewords from code C (M,n) over the BEC can be written as

follows:

Pe
(
C (M,n)) = 1

M

M∑

m=1

∑

y∈Yn

g(y) 
=m

(1− δ)n−N(2|y) δN(2|y)

· I {dH
(
xm,I(0|y), yI(0|y)

) = 0
}

· I {dH
(
xm,I(1|y), yI(1|y)

) = 0
}

(15)

where I {STATEMENT} denotes the indicator function whose
value is 1 if the STATEMENT is correct and 0 otherwise.

C. Column-Wise Description of General Binary Codes

Usually, a general codebook C (M,n) with M codewords and
with blocklength n is written as an M × n codebook matrix
where the M rows correspond to the M codewords:

C (M,n) =
⎛

⎜
⎝

x1
...

xM

⎞

⎟
⎠ =

⎛

⎜
⎝c1 c2 · · · cn

⎞

⎟
⎠ . (16)

In our approach, we prefer to consider the codebook matrix
column-wise rather than row-wise [19]. We denote the length-
M column-vectors of the codebook by c j , j ∈ {1, . . . , n}.

Remark 8: Since we assume equally likely messages, any
permutation of rows only changes the assignment of code-
words to messages and has therefore no impact on the per-
formance. We thus consider two codes with permuted rows
as being equal (this agrees with the concept of a code being
a set of codewords, where the ordering of the codewords is
irrelevant). Furthermore, since we only consider memoryless
channels, any permutation of the columns of C (M,n) will lead
to another code with identical error probability. We say that
such two codes are equivalent. We would like to emphasize
that two codes being equivalent is not the same as two codes
being equal. However, as we are mainly interested in the
performance of a code, we usually treat two equivalent codes
as being the same.

Due to the symmetry of the BEC9 we have an additional
equivalence in the codebook design (compare also with the
BSC [19]).

Lemma 9: Consider an arbitrary code C (M,n) to be used
on the BEC and consider an arbitrary M-vector c. Construct
a new length-(n + 1) code C (M,n+1) by appending c to the
codebook matrix of C (M,n) and another new length-(n + 1)
code C̄ (M,n+1) by appending the flipped vector c̄ = c ⊕ 1 to
the codebook matrix of C (M,n). Then the performance of these
two new codes are identical:

Pe
(
C (M,n+1)) = Pe

(
C̄ (M,n+1)). (17)

Note that Lemma 9 cannot be generalized further, i.e., for
some C (M,n), appending a vector c̃ other than c̄ may result
in a length-(n + 1) code C̃ (M,n+1) that is not equivalent to
C (M,n+1).

Next we define a convenient numbering system for the
possible columns of the codebook matrix of binary codes.

9The symmetry property here is identical to the symmetry definitions in
[20, p. 94]. Hence, it is not surprising that Lemma 9 also holds for general
binary-input symmetric channels.
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Definition 10: For fixed M and bm ∈ {0, 1}, m ∈ M, we
describe the column vector (b1 b2 · · · bM)

T by its reverse
binary representation of nonnegative integers

j =
M∑

m=1

bm 2M−m (18)

and write c(M)j � (b1 b2 · · · bM)
T. For example, c(5)12 =

(0 1 1 0 0) T and c(5)3 = (0 0 0 1 1) T.
Due to Lemma 9, we discard any column starting with a

one, i.e., we require b1 = 0. Moreover, as it will never help
to improve the performance, we exclude the all-zero column.
Hence, the set of all possible candidate columns of general
binary codes can be restricted to

C(M) �
{

c(M)1 , c(M)2 , . . . , c(M)
2M−1−1

}
. (19)

For a given codebook and for any

j ∈ J � {1, . . . , 2M−1 − 1} (20)

let t j denote the number of the corresponding candidate
columns c(M)j appearing in the codebook matrix of C (M,n).
Because of Remark 8, the ordering of the candidate columns
is irrelevant, and any binary code with blocklength

n =
2M−1−1∑

j=1

t j (21)

can therefore be fully described by the parameter vector

t �
[
t1, t2, . . . , t2M−1−1

]
. (22)

We say that such a code has a type vector (or simply type) t,
and write10 C (M,n)

t1,...,t2M−1−1
or C (M,n)

t .
Example 11: For M = 4, the candidate columns set is

C(4) =

⎧
⎪⎪⎨

⎪⎪⎩
c(4)1 �

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠, c(4)2 �

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠, c(4)3 �

⎛

⎜
⎜
⎝

0
0
1
1

⎞

⎟
⎟
⎠,

c(4)4 �

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠, c(4)5 �

⎛

⎜
⎜
⎝

0
1
0
1

⎞

⎟
⎟
⎠, c(4)6 �

⎛

⎜
⎜
⎝

0
1
1
0

⎞

⎟
⎟
⎠,

c(4)7 �

⎛

⎜
⎜
⎝

0
1
1
1

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
. (23)

A codebook C (4,7)
t of type t = [2, 0, 2, 0, 2, 1, 0] is equivalent

to all columns permutations of the following codebook:
⎛

⎜
⎜
⎝

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 0 1 1 0 0 1
1 1 1 1 1 1 0

⎞

⎟
⎟
⎠. (24)

♦

10Note that sometimes, for the sake of convenience, we will omit the
superscripts (M, n) or (M).

D. Weak Flip Codes

We next introduce some special families of binary codes.
Definition 12: Given an integer M ≥ 2, a length-M candi-

date column is called a weak flip column and denoted c(M)weak
if its first component is 0 and its Hamming weight equals to⌊M

2

⌋
or
⌈M

2

⌉
. The collection of all possible weak flip columns

is called weak flip candidate columns set and is denoted by
C(M)weak. The remaining, nonweak flip candidate columns are
collected in C(M)nonweak, i.e., C(M) = C(M)weak ∪ C(M)nonweak.

We see that a weak flip column contains an almost
equal or equal number of zeros and ones. For the remainder
of this paper, we introduce the following shorthands:

J � 2M−1 − 1, �̄ �
⌈

M
2

⌉
, � �

⌊
M
2

⌋
(25a)

L �
(

2�̄− 1

�̄

)
. (25b)

Recall the corresponding sets M given in Definition 1 and J
given in (20).

Lemma 13: The cardinality of the weak flip candidate
columns set is

∣
∣
∣C(M)weak

∣
∣
∣ = L (26)

and the cardinality of the nonweak flip candidate columns set
is

∣
∣
∣C(M)nonweak

∣
∣
∣ = J− L. (27)

Proof: If M = 2�̄, then we have
(2�̄−1

�̄

)
possible choices

of weak flip columns, while if M = 2�̄− 1, we have
(2�̄−2
�̄−1

)+
(2�̄−2

�̄

) = (2�̄−1
�̄

)
choices. This proves (26). Since in total we

have J candidate columns, (27) follows directly from (26).
It can also be computed as

∣
∣
∣C(M)nonweak

∣
∣
∣ =

�−1∑

h=1

(
M− 1

h

)
+

M−1∑

h=�̄+1

(
M− 1

h

)
= J− L. (28)

Remark 14: The above lemma assures that the cardinalities
of the weak flip candidate columns set for M = 2�̄− 1 and of
the weak flip candidate columns set for M = 2�̄ are both the
same for any positive integer �̄ and are both given by

(2�̄−1
�̄

)
.

Actually, if we take C(2�̄−1)
weak and we append as the last bit a

one to all its weak flip columns of weight � = �̄−1 and a zero

to the other weak flip columns of weight �̄, we obtain C(2�̄)weak.

Hence, C(2�̄−1)
weak can be obtained from C(2�̄)weak by removing the

last bit from all column vectors.
Definition 15: A weak flip code C (M,n)

weak is constructed only
by weak flip columns. Since in its type (22) all positions
corresponding to nonweak flip columns are zero, we use a
reduced type vector:

tweak �
[
t j1, t j2, . . . , t jL

]
(29)

where
L∑

w=1

t jw = n (30)
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with jw, w = 1, . . . ,L, representing the numbers of the
candidate columns that are weak flip columns.

For M = 2 or M = 3, all candidate columns are also weak
flip columns (note that 2M−1 − 1 = (2�̄−1

�̄

) = L only when
M = 2 or M = 3). For M = 4, tweak = [t3, t5, t6]. A similar
definition can be given also for larger M; however, one needs
to be aware that the number of weak flip columns is increasing
exponentially fast. For M = 5, we have ten weak flip columns:

C(5)weak =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c(5)3 �

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0
1
1

⎞

⎟
⎟
⎟
⎟
⎠
, c(5)5 �

⎛

⎜
⎜
⎜
⎜
⎝

0
0
1
0
1

⎞

⎟
⎟
⎟
⎟
⎠
, c(5)6 �

⎛

⎜
⎜
⎜
⎜
⎝

0
0
1
1
0

⎞

⎟
⎟
⎟
⎟
⎠
,

c(5)7 �

⎛

⎜⎜
⎜
⎜
⎝

0
0
1
1
1

⎞

⎟⎟
⎟
⎟
⎠
, c(5)9 �

⎛

⎜⎜
⎜
⎜
⎝

0
1
0
0
1

⎞

⎟⎟
⎟
⎟
⎠
, c(5)10 �

⎛

⎜⎜
⎜
⎜
⎝

0
1
0
1
0

⎞

⎟⎟
⎟
⎟
⎠
,

c(5)11 �

⎛

⎜⎜
⎜
⎜
⎝

0
1
0
1
1

⎞

⎟⎟
⎟
⎟
⎠
, c(5)12 �

⎛

⎜⎜
⎜
⎜
⎝

0
1
1
0
0

⎞

⎟⎟
⎟
⎟
⎠
, c(5)13 �

⎛

⎜⎜
⎜
⎜
⎝

0
1
1
0
1

⎞

⎟⎟
⎟
⎟
⎠
,

c(5)14 �

⎛

⎜⎜
⎜
⎜
⎝

0
1
1
1
0

⎞

⎟⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (31)

We will next introduce a special subclass of weak flip codes
that, as we will see in Section IV-B, possesses particularly
beautiful properties.

Definition 16: A weak flip code is called fair if it is
constructed by an equal number of all possible weak flip
columns in C(M)weak. Note that by definition the blocklength of
a fair weak flip code is always an integer-multiple of L.

Fair weak flip codes have been used by Shannon et al. [21]
for the derivation of error exponents, although the codes were
not named at that time. Note that in [21] the error exponents
are defined when blocklength n goes to infinity, but here in
this work we consider finite n.

E. Hadamard Codes

In this section, we review the family of Hadamard codes
and investigate its relation to weak flip codes and fair weak
flip codes. We follow the definition of [12, Ch. 2].

Definition 17: For an even integer m, a (normalized)
Hadamard matrix Hm of order m is an m × m matrix with
entries +1 and −1 and with the first row and column being
all +1, such that

HmH
T

m = mIm (32)

if such a matrix exists. Here Im is the identity matrix of size
m. If the entries +1 are replaced by 0 and the entries −1 by 1,
Hm is changed into the binary Hadamard matrix Am .

Note that a necessary condition for the existence of Hm (and
the corresponding Am ) is that m is 1, 2, or a multiple of 4
[12, Ch. 2].

Definition 18: The binary Hadamard matrix Am gives rise
to three families of Hadamard codes11:

1) The
(
m,m − 1, m

2

)
Hadamard code H1,m consists of

the rows of Am with the first column deleted. Moreover,
the codewords in H1,m that begin with 0 form the(m

2 ,m − 2, m
2

)
Hadamard code H �

1,m if the initial zero
is deleted.

2) The
(
2m,m − 1, m

2 − 1
)

Hadamard code H2,m consists
of H1,m together with the complements of all its code-
words.

3) The
(
2m,m, m

2

)
Hadamard code H3,m consists of the

rows of Am and their complements.

Further Hadamard codes can be created by an arbitrary combi-
nation of the codebook matrices of different Hadamard codes.

Example 19: Consider the (8, 7, 4) Hadamard code

H1,8 =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 0 1 1
0 1 1 1 1 0 0
1 0 0 1 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 1 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

. (33)

From this code, an (8, 35, 20) Hadamard code can be con-
structed by simply concatenating H1,8 five times. ♦

Note that since the rows of Hm are orthogonal, so are
the columns of Hm , and thus it follows that each column
of the corresponding matrix Am has a Hamming weight m

2 .
Moreover, by definition the first row of a binary Hadamard
matrix is the all-zero row. Hence, we see that all Hadamard
codes are weak flip codes, i.e., the family of weak flip codes
is a superset of the family of Hadamard codes.

On the other hand, fair weak flip codes can be seen as a
“subset” of Hadamard codes because for all parameters (M, n)
for which fair weak flip codes and also Hadamard codes exist,
a fair weak flip code can be constructed from a Hadamard
code. The problem with this statement lies in the fact that the
Hadamard codes rely on the existence of Hadamard matrices,
which in general is not guaranteed, i.e., it is difficult to predict
whether for a given pair (M, n), a Hadamard code exists or not.
This is in stark contrast to weak flip codes (which exist for
all M and n) and fair weak flip codes (which exist for all M
and for all n being a multiple of L).

We also remark that a Hadamard code of parameters (M, n),
for which fair weak flip codes exist, is not necessarily equiv-
alent to a fair weak flip code.

Example 20: We continue with Example 19 and note that
the (8, 35, 20) Hadamard code that is constructed by five
repetitions of the matrix H1,8 given in (33) is actually not

11Recall that we describe the code parameters as (M, n, d), where the third
parameter denotes the minimum Hamming distance.
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a fair weak flip code since we have not used all possible
weak flip columns. However, it is possible to find five different
(8, 7, 4) Hadamard codes that combine to an (8, 35, 20) fair
weak flip code. Recall that the (8, 35, 20) fair weak flip code
is composed of all

(7
4

) = 35 different weak flip columns. ♦
Note that two Hadamard matrices are equivalent if one can

be obtained from the other by permuting rows and columns
and by multiplying rows and columns by −1. In other words,
Hadamard codes can actually be constructed from different
sets of weak flip columns.

F. Linear Codes

In conventional coding theory, linear codes form an impor-
tant and well-known class of error correcting codes that
have been shown to possess powerful algebraic properties.
We refrain from introducing them here in detail, but rather
refer to the vast existing literature for more details (e.g.,
see [2], [12]). Instead we focus briefly on certain properties
of linear codes that are important in the context of this work.

We start by categorizing linear codes as a special case of
weak flip codes.

Proposition 21: Every linear code is a weak flip code.
Proof: A linear (M, n) binary code always contains the

all-zero codeword, and each column of its codebook matrix
has Hamming weight M

2 . Thus, it is a weak flip code.
Note that linear codes only exist if M = 2k , while weak flip
codes are defined for any M. Also note that the converse of
Proposition 21 does not necessarily hold, i.e., even if M = 2k

for some k ∈ N � {1, 2, 3, . . .}, a weak flip code C (M,n) is not
necessarily linear. In summary, we have the following relations
among linear, weak flip, and arbitrary (M, n) codes:

{
C (M,n)

lin

}
⊂
{
C (M,n)

weak

}
⊂
{
C (M,n)

}
. (34)

Next we recall an important property of linear codes that
follows immediately from the fact that linear codes are sub-
spaces of the n-dimensional vector space over the channel
input alphabet.

Proposition 22: Let Clin be linear and let xm ∈ Clin be
given. Then the code obtained by adding xm to each codeword
of Clin is equal to Clin.

Finally, we are going to investigate linear codes from a
column-wise perspective. The goal here is to define fair linear
codes.

Being a subspace, linear codes are usually represented by
a generator matrix Gk×n . We now apply our column-wise
point-of-view to the construction of generator matrices.12 The
generator matrix Gk×n consists of n column vectors c j of
length k similar to (16). Note that in the generator matrix
the all-zero column is useless and is therefore excluded. Thus
there are totally

K � 2k − 1 = M− 1 (35)

possible candidate columns for Gk×n : c(k)j � (b1 b2 · · · bk)
T,

where j =∑k
i=1 bi 2k−i and where b1 is not necessarily equal

12Fontaine and Peterson [22] have also used this approach to exhaustively
examine all possible linear codes.

to zero. Let U
T

k be an auxiliary k × K matrix consisting of
all possible K candidate columns for the generator matrix:
U

T
k =

(
c(k)1 · · · c(k)K

)
. This matrix U

T
k then allows us to create

the set of all possible candidate columns of length M = 2k for
the codebook matrix of a linear code.

This allows us to derive the set C(M)lin of all possible length-M
candidate columns for the codebook matrices of binary linear
codes with M = 2k codewords:

Lemma 23: Given a dimension k, the candidate columns set
C(M)lin for linear codes is given by the columns of the M×(M−1)
matrix

(
0

Uk

)
U

T
k (36)

where 0 denotes an all-zero row vector of length k.
Thus, the codebook matrix of any linear code can be

represented by

C (M,n)
lin =

(
0

Uk

)
Gk×n (37)

which consists of columns taken only from C(M)lin . Similarly
to (29), since in its type all positions corresponding to candi-
date columns not in C(M)lin are zero, we can also use a reduced
type vector to describe a k-dimensional linear code:

tlin �
[
t j1, t j2, . . . , t jK

]
(38)

where
∑K
�=1 t j� = n with j�, � = 1, . . . ,K, representing the

numbers of the corresponding candidate columns in C(M)lin .
Definition 24: A linear code is called fair if its codebook

matrix is constructed by an equal number of all possible
candidate columns in C(M)lin . Hence the blocklength of a fair
linear code13 C (M,n)

lin,fair is always a multiple of K = M− 1.
Example 25: Consider the fair linear code with dimension

k = 3 and blocklength n = K = 7:

C (8,7)
lin,fair =

(
0
U3

)
U

T
3 =

(
0
U3

)⎛

⎝
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞

⎠

=

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

(39)

with the corresponding type vector

tlin = [t85, t51, t102, t15, t90, t60, t105] = [1, 1, 1, 1, 1, 1, 1].
(40)

Note that the fair linear code with k = 3 and n = 7 is an
(8, 7, 4) Hadamard linear code with all pairwise Hamming
distances equal to 4. ♦

13We point out that a fair linear code actually is a binary simplex code,
which is the dual to the well-known Hamming code. However, to remain in
sync with the description of fair weak flip codes, throughout this paper we
will stick to the name fair linear codes.
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G. Plotkin Bound

Finally, we recall an important bound that holds for any
(M, n) code.

Lemma 26 (Plotkin Bound [12]): The minimum distance
of an (M, n) binary code C (M,n) always satisfies

dmin
(
C (M,n)) ≤

⎧
⎪⎨

⎪⎩

n·M2
M−1 if M is even

n·M+1
2

M if M is odd.
(41)

Note that from the proof14 of Lemma 26, one can actually
find that a necessary condition for a codebook to meet the
Plotkin Bound with equality is that the codebook is composed
of weak flip columns. Furthermore, Levenshtein [12, Ch. 2]
proved that the Plotkin bound can be achieved provided that
Hadamard matrices exist for orders divisible by 4.

III. PREVIOUS RESULTS

A. SGB Bounds on the Average Error Probability

Shannon et al. [21] derive upper and lower bounds on the
average error probability of a given code used on a DMC.
We quickly summarize their results.

Theorem 27 (SGB Bounds on Average Error Probabil-
ity [21]): For an arbitrary DMC, the average error probability
Pe
(
C (M,n)

)
of a given code C (M,n) with M codewords and

blocklength n is upper- and lower-bounded as follows:

1

4M
e
−n

(
D(DMC)

min (C (M,n))+
√

2
n log 1

Pmin

)

≤ Pe
(
C (M,n)) ≤ (M− 1) e−nD(DMC)

min (C (M,n)) (42)

where D(DMC)
min (C (M,n)) is the minimum discrepancy for a

codebook C (M,n) and where Pmin denotes the smallest nonzero
transition probability of the DMC (cf. [19, Sec. VI] and [21]
for detailed explanations). Here we use a superscript “(DMC)”
to indicate the channel to which the discrepancy refers.

Note that these bounds are specific to a given code design
(via D(DMC)

min ). Therefore, the upper bound is a generally valid
upper bound on the optimal performance, while the lower
bound may not bound the optimal performance from below
unless we apply it to the optimal code or to a suboptimal
code that achieves the optimal D(DMC)

min .

B. PPV Bounds for the BEC

Polyanskiy et al. [23] present upper and lower bounds on
the optimal average error probability for finite blocklength for
general DMCs. For some special cases like the BSC or the
BEC, these bounds can be expressed explicitly by closed-form
formulas. The upper bound is based on random coding.

Theorem 28 (PPV Upper Bound [23, Th. 36]): For the
BEC with erasure probability δ, if the codebook C (M,n)

is created at random based on a uniform distribution,

14We omit this proof, but instead refer to our generalization of the Plotkin
Bound in Theorem 43 in Section IV-C.

the expected average error probability (averaged over all
codewords and all codebooks) satisfies

E
[

Pe
(
C (M,n))

]

= 1−
n∑

j=0

(
n

j

)
(1− δ) jδn− j

·
M−1∑

m=0

1

m + 1

(
M−1

m

)
(2− j )m(1−2− j )M−1−m . (43)

Note that there must exist a codebook whose average error
probability achieves (43), so Theorem 28 provides a general
achievable upper bound on the error probability, although we
do not know the concrete code structure.

Polyanskiy et al. also provide a new general converse for
the average error probability, based on which a closed-form
formula can be derived for the BEC.

Theorem 29 (PPV Lower Bound [23, Th. 38]): For the
BEC with erasure probability δ, any codebook C (M,n) satisfies

Pe
(
C (M,n))

≥
n∑

e=�n−log2 M�+1

(
n

e

)
δe (1− δ)n−e

(
1− 2n−e

M

)
. (44)

Note that (44) was first derived based on an “ad hoc” (i.e.,
BEC specific) argument in [23]. It is then shown in [24] that
the same result can also be obtained using the so-called meta-
converse methodology.

IV. COLUMN-WISE ANALYSIS OF CODES

A. r-Wise Hamming Distance and r-Wise Hamming Match

The minimum Hamming distance is a well-known and
widely used quality criterion of a code. Unfortunately, a design
solely based on the minimum Hamming distance can be
strictly suboptimal even for a very symmetric channel like
the BSC and even for linear codes [19], [25].15 In order to
remedy this, we start by defining a slightly more general and
more concise description of a code: the pairwise Hamming
distance vector.

Definition 30: The pairwise Hamming distance vector
d(M,n) of a code C (M,n) is defined as the length-

(1
2 (M− 1)M

)

vector containing as components the Hamming distances of
all possible codeword pairs:

d(M,n) �
(

d(n)12 , d(n)13 , d(n)23 , d(n)14 , d(n)24 , d(n)34 , . . . ,

d(n)1M, d(n)2M, . . . , d(n)(M−1)M

)
(45)

with d(n)mm� � dH(xm, xm�), 1 ≤ m < m� ≤ M. We remind the
reader of our convention to number the codewords according
to rows in the codebook matrix, see (16).

The minimum Hamming distance dmin is then the minimum
component of the pairwise Hamming distance vector d(M,n).

Note that for this definition it is completely irrelevant
whether the code is linear or not.

15This is in spite of the fact that the error probability performance of a
BSC is completely specified by the Hamming distances between codewords
and received vectors!
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While the pairwise Hamming distance vector already con-
tains more information about a particular code than simply
the minimum Hamming distance, it is still not sufficient to
describe the exact performance of a code. We will therefore
next provide an extension of the pairwise Hamming distance:
the so-called r-wise Hamming distance of a code. We will see
that this generalization (in combination with the type vector
t) allows a precise formulation of the exact error probability
of the code over a BEC.

Definition 31 (r-Wise Hamming Distance and r-Wise Ham-
ming Match): For a given general codebook C (M,n) and an
arbitrary integer 2 ≤ r ≤ M, we fix some integers 1 ≤ i1 <
i2 < · · · < ir ≤ M and define the r-wise Hamming match
ai1 i2 ··· ir

(
C (M,n)) to be the number of codebook columns c

whose i1th, i2th, …, ir th coordinates are all identical:

ai1 i2 ··· ir
(
C (M,n))

�
∣
∣{ j ∈ {1, . . . , n} : c j,i1 = c j,i2 = · · · = c j,ir

}∣∣,
1 ≤ i1 < i2 < · · · < ir ≤ M. (46)

The r-wise Hamming distance di1 i2 ··· ir
(
C (M,n)

)
is accordingly

defined as

di1 i2 ··· ir
(
C (M,n)) � n − ai1 ir ··· ir

(
C (M,n)),

1 ≤ i1 < i2 < · · · < ir ≤ M. (47)

It is straightforward to verify that the 2-wise Hamming
distances according to Definition 31 are identical to the
pairwise Hamming distances given in the pairwise Hamming
distance vector (45).

The r -wise Hamming distances can be written elegantly
with the help of the type vector:

di1 i2 ··· ir
(
C (M,n)

t

) = n −
∑

j∈J s.t.
c j,i1=c j,i2=···=c j,ir

t j ,

1 ≤ i1 < i2 < · · · < ir ≤ M. (48)

Here t j denotes the j th component of the type vector t of
length J = 2M−1 − 1, and c j,i� is the i�th component of the
j th candidate column c(M)j as given in Definition 10, and J �
{1, . . . , 2M−1 − 1} = {1, . . . , J} was defined in (20).

When the considered type-t code is unambiguous from the
context, we will usually omit the explicit specification of the
code and abbreviate (46) and (47) as a(M,n)i1 i2 ··· ir and d(M,n)i1 i2 ··· ir
or, even shorter, as a(M,n)I and d(M,n)I for some given I =
{i1, i2, . . . , ir }. Note that there are

(M
r

)
different choices of

parameters 1 ≤ i1 < i2 < · · · < ir ≤ M, i.e., there are
(M

r

)

different r -wise Hamming distances per code.
Example 32: For M = 4 and r = 3, there are

(M
r

) = (4
3

) = 4
different 3-wise Hamming distances:

d(4,n)123 = n − t1, d(4,n)124 = n − t2
d(4,n)134 = n − t4, d(4,n)234 = n − t7

}

(49)

and there is only one 4-wise Hamming distance:
d(4,n)1234 = n. ♦

The definition of the r -wise Hamming distances leads to a
natural extension of the minimum Hamming distance.

Definition 33 (Minimum r-Wise Hamming Distance): For
a given r ∈ {2, . . . ,M}, the minimum r-wise Hamming
distance dmin;r of a code C (M,n) is defined as the minimum
of all possible r -wise Hamming distances of this (M, n) code:

dmin;r
(
C (M,n)) � min

I⊆{1,...,M} :
|I|=r

dI
(
C (M,n)) (50)

where the minimization is over all size-r subsets I ⊆
{1, . . . ,M}.

Correspondingly, the maximum r-wise Hamming match
amax;r is defined as the maximum of all possible r -wise
Hamming matches aI

(
C (M,n)) and is given by

amax;r
(
C (M,n)) = n − dmin;r

(
C (M,n)). (51)

Recall that in traditional coding theory it is customary to
specify a code with three parameters (M, n, dH,min), where
the third parameter specifies the minimum pairwise Hamming
distance. We follow this tradition but replace the minimum
pairwise Hamming distance by a vector containing all mini-
mum r -wise Hamming distances for r = 2, . . . , �̄:

dmin �
(
dmin;2, dmin;3, . . . , dmin;�̄). (52)

The reason why we restrict ourselves to r ≤ �̄ lies in the
fact that for weak flip codes the minimum r -wise Hamming
distance is only relevant for 2 ≤ r ≤ �̄; see the remark after
Theorem 43 below.

Example 34: We continue with Example 25. The fair linear
code with k = 3 and n = 7 given in (39) is an (8, 7,dmin)
Hadamard linear code with dmin = (4, 6, 6). Similarly, the fair
linear code with k = 3 and n = 35 that is created by
concatenating the codebook matrix (39) five times is an(
8, 35, (20, 30, 30)

)
Hadamard linear code.

Both codes are obviously not fair weak flip codes for M = 8.
Later in Theorem 45 we will show that the fair weak flip
code with M = 8 codewords is actually an

(
8, 35, (20, 30, 34)

)

code. ♦
Wei [13], defines the sth generalized Hamming weight of

a k-dimensional linear code as the minimum support of any
s-dimensional linear subcode, where the support is the number
of codebit positions at which not all codewords are zero.
Obviously, this definition is strongly restricted because firstly
it is only defined for a linear code, and because secondly in
general an arbitrarily picked subset of codewords of a linear
code is not a linear subcode, i.e., Wei only considers a very
much limited number of subsets of codewords taken from
the given linear code. Nevertheless, it can be shown that if
we pick 2s codewords (s ≤ k) from a k-dimensional linear
code in such a way that these 2s codewords form a linear
subcode, then the sth generalized Hamming weight is equal to
the smallest r -wise Hamming distance among all r satisfying
2s−1 < r ≤ 2s [26], [27].

Following the classical definition of an equidistant code
being a code whose pairwise Hamming distance between all
codewords is the same, we extend this definition to the r -wise
Hamming distance and define r-wise equidistant codes.

Definition 35 (r-Wise Equidistant Codes): For a given
integer 2 ≤ r ≤ M, an (M, n) code C (M,n) is called r-wise
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equidistant if all r -wise Hamming distances are equal, i.e., if
for all choices of integers 1 ≤ i1 < i2 < · · · < ir ≤ M

di1···ir
(
C (M,n)) = constant. (53)

We end this section with a relation between the r -wise
Hamming distance and the type vector of a code. To that goal,
we first state a property regarding the number of candidate
columns with r equal components.

Lemma 36: For any integer 2 ≤ r ≤ M and any choice
1 ≤ i1 < i2 < · · · < ir ≤ M, the cardinality of the index set16

Ji1 i2 ··· ir �
{

j ∈ J : c j,i1 = c j,i2 = · · · = c j,ir

}
(54)

is equal to 2M−r−1. In other words, there are totally 2M−r−1
candidate columns in C(M) that have identical components at
the given positions i1, i2, . . . , ir .

Proof: First, consider the case when i1 = 1. Since the
first position of each candidate column is always equal to zero,
we only need to consider those j ∈ J such that c j,i1 = c j,i2 =
· · · = c j,ir = 0. There are in total 2M−r such columns, but we
need to subtract 1 because we exclude the all-zero column.

Second, consider the case when i1 > 1. Since the first
position is fixed to zero, we ignore it. There are 2M−1−r

columns with c j,i1 = c j,i2 = · · · = c j,ir = 0 and the same
number with c j,i1 = c j,i2 = · · · = c j,ir = 1. Once again
excluding the all-zero column, we have in total 2 ·2M−1−r −1
possible columns.

Corollary 37: The r -wise Hamming distance
d1 2 ··· r

(
C (M,n)

t

)
of the first r codewords is given by

d(M,n)1 2 ··· r =
J∑

j=2M−r

t j . (55)

If every candidate column in C(M) is used exactly once in
C (M,n)

t , i.e., t j = 1 for 1 ≤ j ≤ J, then all r -wise Hamming
distances d(M,n)i1 ··· ir have an identical value:

d(M,n)i1 ··· ir = 2M−1 − 2M−r , 1 ≤ i1 < · · · < ir ≤ M. (56)

Proof: By the numbering system in Definition 10, together
with Definition 31 and Lemma 36, we have

d(M,n)1 2 ··· r = n −
∑

j∈J1,...,r

t j = n −
2M−r−1∑

j=1

t j =
J∑

j=2M−r

t j . (57)

If t1 = t2 = · · · = tJ = 1 (see (19)), we obtain again by
Lemma 36 for arbitrary 1 ≤ i1 < · · · < ir ≤ M,

d(M,n)i1 ··· ir = 2M−1 − 1−
2M−r−1∑

j=1

1 (58a)

= 2M−1 − 2M−r = d(M,n)1 2 ··· r . (58b)

16Here again, c j,i� denotes the i�th component of the j th candidate column

c(M)j .

B. Characteristics of Weak Flip Codes

In this section, we concentrate on the analysis of the family
of weak flip codes.

First, we pose the question which of the many powerful
algebraic properties of linear codes are retained in weak flip
codes.

Theorem 38: Consider a weak flip code C (M,n)
weak and fix

some codeword xm ∈ C (M,n)
weak . If we add this codeword to

all codewords in C (M,n)
weak , then the resulting code

C̃ (M,n) �
{

x⊕ xm : x ∈ C (M,n)
weak

}
(59)

is still a weak flip code; however, it is not necessarily the same
one.

Proof: Let C (M,n)
weak be a weak flip code according to

Definition 15. We have to prove that

⎛

⎜
⎜
⎜
⎝

x1
x2
...

xM

⎞

⎟
⎟
⎟
⎠
⊕

⎛

⎜
⎜
⎜
⎝

xm

xm
...

xm

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

x1 ⊕ xm
...

xm ⊕ xm = 0
...

xM ⊕ xm

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

� C̃ (M,n) (60)

is a weak flip code. Let c j , 1 ≤ j ≤ n, denote the j th column
vector of the code matrix of C (M,n)

weak . Then C̃ (M,n) has the
column vectors

c̃ j =
{

c j if xm, j = 0

c̄ j if xm, j = 1.
(61)

Since c j is a weak flip column, either wH(c j ) =
⌊M

2

⌋
or

wH(c j ) =
⌈M

2

⌉
, which implies that either wH(c̄ j ) =

⌈M
2

⌉

or wH(c̄ j ) =
⌊M

2

⌋
. Now it only remains to interchange the

first codeword of C̃ (M,n) and the all-zero codeword in the mth
row in C̃ (M,n) (which is always possible, see Remark 8). As a
result, C̃ (M,n) is also a weak flip code.

Theorem 38 is a beautiful property of weak flip codes;
however, it still represents a considerable weakening of the
powerful property of linear codes given in Proposition 22. This
can be fixed by considering the subfamily of fair weak flip
codes.

Theorem 39 (Quasi-Linear Codes): Let C (M,n)
fair be a fair

weak flip code and let xm ∈ C (M,n)
fair be given. Then the code

C̃ (M,n) �
{

x⊕ xm : x ∈ C (M,n)
fair

}
(62)

is equivalent to C (M,n)
fair .

Proof: We divide the weak flip candidate columns in C(M)weak
into two subfamilies: one subfamily consists of the columns
with the mth component being zero, and the columns in the
other subfamily have their mth component equal to one. Next
we add the mth codeword to the codewords in C (M,n)

fair and
then interchange the first and mth components of each column
in the code matrix of C (M,n)

fair to form a new code C̃ (M,n).
It is apparent that the columns in the first subfamily are
unchanged by such code-addition-and-interchanging manipu-
lation. However, when M is odd, the weights of columns in
the second subfamily change either from � to �̄, or from �̄ to
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�, while these weights stay the same when M is even. As a
result, after such code-addition-and-interchanging manipula-
tion, the columns belonging to the second subfamily remain
distinct weak flip columns and are still contained in the second
subfamily (since their mth components are still equal to one).
Thus, all the weak flip columns remain to be used equally in
C̃ (M,n), showing that C̃ (M,n) is fair.

Comparing Theorem 39 with Proposition 22 and recalling
Proposition 21 and the discussion after it, we realize that the
family of fair weak flip codes is a considerable enlargement
of the family of linear codes.

The following corollary is a direct consequence of
Lemma 36.

Corollary 40: For any integer 2 ≤ r ≤ M, the r -wise
Hamming distances d(M,n)i1 ··· ir of a fair weak flip code C (M,n)

fair
for any choice 1 ≤ i1 < i2 < · · · < ir ≤ M, are all identical
and are given by

d(M,n)i1 ··· ir =
n

L
d(M,L)i1 ··· ir =

n

L

[
L−

(
2�̄− r

�̄

)]
. (63)

Proof: By definition of a fair weak flip code, we observe
that the r -wise Hamming distance of arbitrary r codewords
is a fixed integer multiple (i.e., n/L) of the r -wise Hamming
distance d(M,L)i1···ir of a fair weak flip code of blocklength n = L.

We apply the proof idea of Lemma 36. When M = 2�̄−1 is
odd, first consider the case of i1 = 1. Since the first position
of each weak flip column is always equal to zero, the number
of weak flip columns with weight � such that c j,i1 = c j,i2 =
· · · = c j,ir = 0 equals

(M−r
�̄−1

)
, and the number of weak flip

columns with weight �̄ is
(M−r
�̄

)
. In total, we have the r -wise

Hamming match

a(M,n)1 i2 ··· ,ir =
n

L

[(
M− r

�̄− 1

)
+
(

M− r

�̄

)]
= n

L

(
2�̄− r

�̄

)
(64)

where we take M = 2�̄− 1 in the last equality.
Second, consider the case when i1 > 1. Since the first

position is fixed to zero, we ignore it. There are
(M−r−1
�̄−1

)

columns with weight �̄ − 1 such that c j,i1 = c j,i2 = · · · =
c j,ir = 0, and there are

(M−r−1
�̄

)
columns with weight �̄ such

that c j,i1 = c j,i2 = · · · = c j,ir = 0. Similarly, there are(M−r−1
�̄−1−r

)
columns with weight �̄− 1 such that c j,i1 = c j,i2 =

· · · = c j,ir = 1, and there are
(M−r−1
�̄−r

)
columns with weight �̄

such that c j,i1 = c j,i2 = · · · = c j,ir = 1. In total we have the
r -wise Hamming match

a(M,n)i1 i2 ··· ir =
n

L

[(
M− r − 1

�̄− 1

)
+
(

M− r − 1

�̄

)

+
(

M− r − 1

�̄− 1− r

)
+
(

M− r − 1

�̄− r

)]
(65)

= n

L

[(
M− r

�̄

)
+
(

M− r

�̄− r

)]
(66)

= n

L

(
2�̄− r

�̄

)
(67)

where in the last equality we use M = 2�̄− 1.

In a similar way, given M = 2�̄ is even, we obtain

a(M,n)i1 ··· ir =
{

n
L

(M−r
�̄

)
if i1 = 1

n
L

[(M−r−1
�̄

)+ (M−r−1
�̄−r

)]
if i1 > 1.

(68)

The proof is completed by combining all possible cases using
that d(M,n)i1 ··· ir = n − a(M,n)i1 ··· ir .

Recall that for a given choice of r column positions 1 ≤
i1 < i2 < · · · < ir ≤ M, the r -wise Hamming match counts
how many columns exist in the codebook matrix that have
identical entries in these r positions. Now we would like
to look at this the other way around: for a fixed candidate
column, we would like to count how many different choices
of r positions 1 ≤ i1 < i2 < · · · < ir ≤ M exist such that all
these positions have identical entries.

Since a candidate column with Hamming weight equal to h
has h components of value 1 and M− h components of value
0, it is easy to see that the following lemma always holds.

Lemma 41: For given an integer 2 ≤ r ≤ �̄ and an arbitrary
candidate column c j , j = 1, . . . , J, the cardinality of the set
{
(i1, i2, . . . , ir ) : 1 ≤ i1 < i2 < · · · < ir ≤ M,

c j,i1 = c j,i2 = · · · = c j,ir

}
(69)

is equal to
(h

r

)+ (M−h
r

)
, where h = wH(c j ).

Finally, we illustrate an example of Lemma 41.
Example 42: For M = 4, the pairwise Hamming distance

vector of a weak flip code of type tweak can be listed as
follows:

d(4,n) = (n − t3, n − t5, n − t6, n − t6, n − t5, n − t3) (70)

i.e., each t jw , w = 1, 2, 3, shows up exactly twice. ♦

C. Generalized Plotkin Bound for the r-Wise
Hamming Distance

The r -wise Hamming distance (together with the type vector
t) plays an important role in the closed-form expression of the
average error probability for an arbitrary code C (M,n)

t over
a BEC. It is therefore interesting to find some bounds on
the r -wise Hamming distance. We start with a generalization
of the Plotkin bound for the minimum pairwise Hamming
distance to the situation of the minimum r -wise Hamming
distance.

Theorem 43 (Plotkin Bound for the Minimum r-Wise Ham-
ming Distance): The minimum r -wise Hamming distance with
2 ≤ r ≤ M of an (M, n) binary code satisfies

dmin;r
(
C (M,n)) ≤

⎧
⎨

⎩
n

(
1− (�̄−1

r−1)

(2�̄−1
r−1 )

)
if 2 ≤ r ≤ �̄

n if �̄ < r ≤ M.
(71)

Proof: The bound for r > �̄ is trivial and therefore needs
no proof. We focus on 2 ≤ r ≤ �̄. Note that because there are
M(M− 1) · · · (M− r + 1) different choices for 1 ≤ i1 < · · · <
ir ≤ M, we have

∑

I⊆{1,...,M} :
|I|=r

aI
(
C (M,n))

≤ M(M− 1) · · · (M− r + 1) · amax;r
(
C (M,n)). (72)
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On the other hand, if we look at the codebook matrix C (M,n)

from a column-wise point of view and define h j to be the
number of zeros in the j th column (and hence M − h j to
be the number of ones in the j th column), we see that the
j th column contributes h j (h j − 1) · · · (h j − r + 1) possible
choices of picking r different components that all are zero and
(M− h j )(M− h j − 1) · · · (M− h j − r + 1) choices of picking
r different components that all are one. Hence,17

∑

I⊆{1,...,M} :
|I|=r

aI
(
C (M,n))

=
n∑

j=1

[
h j (h j − 1) · · · (h j − r + 1)

+ (M− h j )(M− h j − 1) · · · (M− h j − r + 1)
]

(75)

≥ n
[
�(�− 1) · · · (�− r + 1)

+ �̄(�̄− 1) · · · (�̄− r + 1)
]

(76)

where the lower bound is achieved if h j = �̄ or � for all
j = 1, . . . , n, i.e., if the columns are weak flip columns. Note
that when r = �̄ and M is odd, the first term in the bracket
in (76) is zero because (�− r + 1) = (�− �̄+ 1) = 0.

17Under r ≤ h j ≤ M− h j , (75) can be lower-bounded as follows:

h j (h j − 1) · · · (h j − r + 1)

+ (M− h j )(M− h j − 1) · · · (M− h j − r + 1)

= r!
[(

h j

r

)
+
(

M − h j

r

)]
≥ r!

[(
h j + 1

r

)
+
(

M − h j − 1

r

)]

≥ · · · ≥ r!
[(
�

r

)
+
(
�̄

r

)]
(73)

where the first inequality holds as long as M− h j − 1 ≥ h j because

[(
h j

r

)
+
(

M − h j

r

)]
−
[(

h j + 1

r

)
+
(

M − h j − 1

r

)]

=
(

M− h j − 1

r − 1

)
−
(

h j

r − 1

)
≥ 0 (74)

and we can continue the process of adding one to the top number in the first
binomial coefficient and meanwhile subtracting one from the top number in
the second binomial coefficient until the last inequality in (73) is reached.
The same argument can be used to validate (76) under r ≤ M− h j ≤ h j . In
the special case that h j < r ≤ M− h j (or M− h j < r ≤ h j ), which occurs
definitely when r = �̄ and M odd, (75) should be refined to

max{h j (h j − 1) · · · (h j − r + 1), 0}
+ max{(M− h j )(M− h j − 1) · · · (M− h j − r + 1), 0}
≥ max{(h j + 1)(h j ) · · · (h j − r + 2), 0}
+ max{(M− h j − 1)(M− h j − 2) · · · (M− h j − r), 0}
≥ max{(h j + 2)(h j + 1) · · · (h j − r + 3), 0}
+ max{(M− h j − 2)(M− h j − 3) · · · (M− h j − r − 1), 0}
≥ · · ·

for which the process can be repeated (r − h j ) times to reach the case
considered in (73); hence (76) still holds.

Combining (72) and (76) (and separately calculating the
cases where M is even or odd), we obtain

amax;r
(
C (M,n))

≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n 2·�̄(�̄−1)(�̄−2)···(�̄−r+1)
(2�̄)(2�̄−1)(2�̄−2)···(2�̄−r+1)

if M = 2�̄

n �̄(�̄−1)(�̄−2)···(�̄−r+1)+(�̄−1)(�̄−2)···(�̄−r)
(2�̄−1)(2�̄−2)···(2�̄−r)

if M = 2�̄− 1

(77)

= n

(�̄−1
r−1

)

(2�̄−1
r−1

) . (78)

The above theorem only provides absorbing bounds to the
r -wise Hamming distance for 2 ≤ r ≤ �̄, while further
increasing the parameter r only renders trivially dmin;r ≤ n.
Since the minimum r -wise Hamming distance of a weak flip
code for r > �̄ is always equal to this trivial bound n and
therefore is irrelevant for the exact error performance, the vec-
tor (52) contains the minimum r -wise Hamming distances for
2 ≤ r ≤ �̄ only.

It is well-known that Hadamard codes achieve the Plotkin
bound (Lemma 26) with equality, i.e., they achieve the largest
minimum pairwise Hamming distance (or equivalently, the
largest minimum 2-wise Hamming distance) [12, Ch. 2].
Moreover, Hadamard codes are also (pairwise) equidistant.18

In the following we will investigate generalizations of these
two properties for weak flip codes. We will show the follow-
ing:

1) If a weak flip code (of a certain blocklength n) is r -
wise equidistant, then it is also s-wise equidistant for
all s = 2, . . . , r − 1.

2) If in addition to be r -wise equidistant, it also
achieves the r -wise Plotkin bound (Theorem 43),
then it also achieves the s-wise Plotkin bound for all
s = 2, . . . , r − 1.

3) Fair weak flip codes are r -wise equidistant and achieve
the r -wise Plotkin bound for all 2 ≤ r ≤ M.

The proof will make use of s-designs [28] from combinatorial
design theory:

Definition 44 [28, Ch. 9]: Let v, κ , λs , and s be positive
integers such that v > κ ≥ s. An s-(v, κ, λs ) design or simply
s-design is a pair (X ,B), where X is a set of size v and B
is a collection of subsets of X (called blocks), such that the
following properties are satisfied:

1) each block B ∈ B contains exactly κ points, and
2) every set of s distinct points is contained in exactly λs

blocks.

We now claim that some specific weak flip codes (for
an arbitrary M and for certain blocklengths) can be seen as
r -designs with 2 ≤ r ≤ �̄ and achieve the generalized Plotkin
upper bound (71) with equality (again, it is trivial to see that
their dmin;r for r > �̄ are equal to n).

18Note that the two properties of a code being equidistant and a code achiev-
ing the Plotkin bound do not imply each other. There exist Plotkin-bound
achieving codes that are not equidistant, and there also exist equidistant codes
that do not achieve the Plotkin bound.
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Theorem 45: Fix some M, a blocklength n with
n mod L = 0, and some 2 ≤ r ≤ �̄. Then if a weak flip code
is r -wise equidistant, then it is also s-wise equidistant for
all 2 ≤ s < r . Moreover, if this r -wise equidistant weak flip
code C (M,n)

equidist also achieves the generalized Plotkin bound
(and hence achieves the largest minimum r -wise Hamming
distance), i.e., it satisfies

dmin;r
(
C (M,n)

equidist

)
= n

⎛

⎝1−
(�̄−1

r−1

)

(2�̄−1
r−1

)

⎞

⎠ (79)

then C (M,n)
equidist must also achieve the largest minimum s-wise

Hamming distances for all 2 ≤ s < r .
Proof: We start by explaining how we connect the r -wise

Hamming distance with 2 ≤ r ≤ �̄ of an r -wise equidistant
weak flip code to the s-(v, κ, λs ) design. Consider an r -wise
equidistant weak flip code with a certain blocklength n. Let
M � {1, 2, . . . ,M}. Denote by B the collection containing
all �̄-size subsets B � {i1, i2, . . . , i�̄} ⊆M such that c j,i1 =
c j,i2 = · · · = c j,i�̄ , 1 ≤ j ≤ n. It can then be verified from
the definition of an r -wise equidistant weak flip code that this
completes the construction of an r -(M, �̄, λr ) design, where
λr is by definition equal to n−d(M,n)I with I being any size-r
subset of M.

Using a fundamental theorem in combinatorial design the-
ory [28, Th. 9.4], we next infer that an r -(M, �̄, λr ) design is
also an s-(M, �̄, λs ) design with 2 ≤ s < r and

λs = λr

(M−s
r−s

)

(�̄−s
r−s

) . (80)

Since an s-(M, �̄, λs) design corresponds to an s-wise equidis-
tant weak flip code, this proves the first statement.

If we additionally assume that the parameter λr is equal to
the maximum r -wise Hamming match amax;r satisfying (79),
we then obtain for M = 2�̄:

amax;s = amax;r

(M−s
r−s

)

(�̄−s
r−s

) (81)

= n

(�̄−1
r−1

)

(2�̄−1
r−1

)

(2�̄−s
r−s

)

(�̄−s
r−s

) (82)

= n

(�̄−1)!
(�̄−r)! (r−1)!
(2�̄−1)!

(2�̄−r)! (r−1)!

(2�̄−s)!
(r−s)! (2�̄−r)!

(�̄−s)!
(�̄−r)! (r−s)!

(83)

= n

(�̄−1)!
(�̄−s)! (s−1)!
(2�̄−1)!

(2�̄−s)! (s−1)!
(84)

= n

(�̄−1
s−1

)

(2�̄−1
s−1

) . (85)

We thus confirm that C (M,n)
equidist also meets the smallest max-

imum s-wise Hamming matches (i.e., the largest minimum
s-wise Hamming distances) for 2 ≤ s < r .

In the case of M = 2�̄ − 1, the definition of weak flip
codes indicates that all codewords of C (2�̄−1,n)

equidist are contained

in C (2�̄,n)
equidist. Hence,

dmin;r
(
C (2�̄−1,n)

equidist

) ≥ dmin;r
(
C (2�̄,n)

equidist

) = n − n

(�̄−1
r−1

)

(2�̄−1
r−1

) (86)

which again achieves the Plotkin upper bound for r -wise
Hamming distances in Theorem 43.

The following corollary follows directly from Theorem 45
and Corollary 40.

Corollary 46: The fair weak flip code C (M,n)
fair achieves the

largest minimum r -wise Hamming distance for all 2 ≤ r ≤ �̄
among all (M, n) codes.

Proof: The proof is completed by observing that the
smallest maximum �̄-wise Hamming matches of (71) is equal
to

n

(�̄−1
�̄−1

)

(2�̄−1
�̄−1

) = n
1

L
(87)

which, according to Corollary 40 with r there replaced by �̄,
is achieved by C (M,n)

fair .
We make the following remark to Corollary 46: The fair

linear code always meets the Plotkin bound for the 2-wise
Hamming distance; however, in contrast to the fair weak flip
code C (M,n)

fair , it does not necessarily meet the Plotkin bound for
r -wise Hamming distances for r > 2. This gives rise to our
suspicion that a fair linear code may perform strictly worse
than the optimal fair weak flip code even if it is the best
linear code. Proper evidence for this claim will be given in
Section V-G.

V. PERFORMANCE ANALYSIS OF THE BEC

In Section II-C we have shown that any codebook can
be described by the type vector t. Therefore the minimiza-
tion of the average error probability among all possible
codebooks turns into an optimization problem on the dis-
crete vector t, subject to the condition that

∑J
j=1 t j = n.

Consequently, the r -wise Hamming distance and the prop-
erties of the type vector play an important role in our
analysis.

A. Exact Average Error Probability of a Code With an
Arbitrary Number of Codewords M

We firstly derive a useful result that gives the exact
average error probability as a function of the type
vector t.

Lemma 47 (Inclusion–Exclusion Principle in Probability
Theory [29]): Let A1, A2, . . . ,AM be M (not necessarily
independent) events in a probability space. The inclusion–
exclusion principle states that

Pr

⎛

⎝
M⋃

m=1

Am

⎞

⎠ =
M∑

r=1

(−1)r−1
∑

I⊆{1,2,...,M} :
|I|=r

Pr

(
⋂

i∈I
Ai

)

.

(88)
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We will next apply the idea of the inclusion–exclusion
principle to the closed decoding regions given in Defini-
tion 3. To simplify our notation, we define the following
shorthands:

Pr
(

D
(M,n)
m

∣
∣∣xm

)
�

∑

y∈D
(M,n)
m

PY|X(y|xm) (89)

Pr

(
⋂

i∈I
D
(M,n)
i

∣
∣∣
∣
∣
x�

)

�
∑

y∈⋂i∈I D
(M,n)
i

PY|X(y|x�,�∈I),

I ⊆M (90)

where for every y in
⋂

i∈I={i1 ,i2,...,ir } D
(M,n)
i , we note accord-

ing to Definition 3 that

max
1≤m�≤M

PY|X(y|xm�)

= PY|X(y|xi1) = PY|X(y|xi2) = · · · = PY|X(y|xir ) (91)

and hence the exact choice of � is irrelevant in (90).
Theorem 48: Consider an (M, n) coding scheme

with its corresponding closed ML decoding regions
Dm as given in Definition 3, where we drop the
superscript “(M, n)” for notational convenience.
Defining

Dm � Dm \
⎛

⎝Dm ∩
⎛

⎝
⋃

i∈{1,...,m−1}
Di

⎞

⎠

⎞

⎠ (92)

we have

Pr (Dm |xm)

= Pr
(
Dm

∣
∣xm

)

−
m−1∑

r=1

(−1)r−1
∑

I⊆{1,...,m−1} :
|I|=r

Pr

(
⋂

i∈I

(
Di ∩ Dm

)
∣∣
∣
∣
∣
xm

)

(93)

and the exact average success probability can be expressed
as

Pc
(
C (M,n))

= 1

M

M∑

r=1

(−1)r−1
∑

I⊆{1,...,M} :
|I|=r

Pr

(
⋂

i∈I
Di

∣
∣∣
∣
∣
x�,�∈I

)

. (94)

Proof: By Definition 3, a possible choice of ML decoding
regions is given as follows:

D1 � D1 (95)

D2 � D2 \ D1 (96)

= D2 \
(
D2 ∩ D1

)
(97)

D3 � D3 \
(
D1 ∪ D2

)
(98)

= D3 \
(
D3 ∩

(
D1 ∪ D2

))
(99)

...

i.e., we obtain (92). We rewrite

Dm ∩
⎛

⎝
⋃

i∈{1,...,m−1}
Di

⎞

⎠ =
⋃

i∈{1,...,m−1}

(
Dm ∩ Di

)
(100)

and use Lemma 47 to obtain

Pr (Dm |xm)

= Pr

⎛

⎝Dm \
⎛

⎝
⋃

i∈{1,...,m−1}

(
Dm ∩ Di

)
⎞

⎠

∣
∣
∣
∣∣
∣
xm

⎞

⎠ (101)

= Pr
(
Dm

∣
∣xm

)

− Pr

⎛

⎝
⋃

i∈{1,...,m−1}

(
Dm ∩ Di

)
∣
∣
∣
∣
∣
∣
xm

⎞

⎠ (102)

= Pr
(
Dm

∣
∣xm

)

−
m−1∑

r=1

(−1)r−1 ·
∑

I⊆{1,...,m−1} :
|I|=r

Pr

(
⋂

i∈I

(
Dm ∩ Di

)
∣
∣
∣
∣∣
xm

)

(103)

which proves (93).
The average success probability can now be expressed as

follows:

Pc
(
C (M,n))

= 1

M

M∑

m=1

Pr (Dm |xm) (104)

= 1

M

M∑

m=1

⎛

⎜
⎜
⎝Pr

(
Dm

∣
∣xm

)

−
m−1∑

r=1

(−1)r−1

·
∑

I⊆{1,...,m−1} :
|I|=r

Pr

(
⋂

i∈I

(
Dm ∩ Di

)
∣
∣
∣∣
∣
xm

)
⎞

⎟⎟
⎠ (105)

= 1

M

M∑

m=1

⎛

⎜⎜
⎝Pr

(
Dm

∣∣xm
)

+
m−1∑

r=1

(−1)r

·
∑

I⊆{1,...,m−1} :
|I|=r

Pr

(
⋂

i∈I

(
Dm ∩ Di

)
∣
∣∣
∣
∣
x�,�∈I∪{m}

)
⎞

⎟
⎟
⎠

(106)
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= 1

M

M∑

m=1

⎛

⎜
⎜
⎝

m−1∑

r=0

(−1)r

·
∑

I⊆{1,...,m−1} :
|I|=r

Pr

(
⋂

i∈I

(
Dm ∩ Di

)
∣
∣
∣
∣
∣
x�,�∈I∪{m}

)
⎞

⎟
⎟
⎠

(107)

= 1

M

M−1∑

r=0

(−1)r
M∑

m=r+1⎛

⎜
⎜
⎝

∑

I⊆{1,...,m−1} :
|I|=r

Pr

(
⋂

i∈I

(
Dm ∩ Di

)
∣
∣∣
∣
∣
x�,�∈I∪{m}

)
⎞

⎟
⎟
⎠ (108)

= 1

M

M−1∑

r=0

(−1)r
∑

I⊆{1,...,M} :
|I|=r+1

Pr

(
⋂

i∈I
Di

∣
∣
∣∣
∣
x�,�∈I

)

(109)

= 1

M

M∑

r=1

(−1)r−1
∑

I⊆{1,...,M} :
|I|=r

Pr

(
⋂

i∈I
Di

∣
∣
∣
∣∣
x�,�∈I

)

. (110)

Here, (105) follows from (103); in (106) we allow different
choices of the conditioning argument, which does not change
the expression because of (91); in (107) we include the empty
set into the sum to take care of the first term; and in (108)
and (109) we exchange the two outer sums and then combine
the resulting two inner sums. This completes the proof.

By the r -wise Hamming distance and Theorem 48, we are
now able to give a closed-form expression for the exact
average error probability of an arbitrary code C (M,n)

t used on
a BEC.

Theorem 49 (Average Error Probability on the BEC):
Consider a BEC with arbitrary erasure probability 0 ≤ δ < 1
and an arbitrary code C (M,n)

t with M ≥ 2. The average ML
error probability can be expressed using the type vector t as
follows:

Pe

(
C (M,n)

t

)
= 1

M

M∑

r=2

(−1)r
∑

I⊆{1,...,M} :
|I|=r

δd(M,n)I (111)

where d(M,n)I denotes the r -wise Hamming distance as given
in Definition 31.

Proof: Comparing (94) and (111), we see that the theorem
can be proved by showing that

Pr
(
Dm

∣
∣xm

) = 1, ∀m ∈M (112)

Pr

(
⋂

i∈I
Di

∣
∣∣
∣
∣
x�,�∈I

)

= δd(M,n)I , ∀ I ⊆M with |I| ≥ 2.

(113)

By definition and because the channel is a BEC,

Dm =
{
y : dH

(
xm,I(0|y), yI(0|y)

)

= dH
(
xm,I(1|y), yI(1|y)

) = 0
}

(114)

=
n⋃

N=0

⋃

N⊆Nn :|N |=N

{
y : dH (2N , yN )

= dH
(
xm,Nn\N , yNn\N

)=0
}

(115)

where we abbreviate Nn � {1, . . . , n} and 2 denotes the all-2
vector. Therefore, the conditional success probability of the
closed decoding region Dm is

Pr
(
Dm

∣
∣xm

) =
∑

y∈Dm

PY|X
(
y
∣
∣xm

)

=
n∑

N=0

(
n

N

)
δN(1− δ)n−N = 1. (116)

Similarly,
⋂

i∈I
Di =

{
y : dH

(
xi,I(0|y), yI(0|y)

)

= dH
(
xi,I(1|y), yI(1|y)

) = 0 ∀ i ∈ I
}

(117)

=
n⋃

N=d(M,n)I

⋃

N⊇Nn\NI :|N |=N

{
y :

dH (2N , yN ) = dH
(
xi1,Nn\N , yNn\N

) = 0
}

(118)

where for convenience, we set I = {i1, . . . , ir } and NI �
{ j ∈ Nn : xi1, j = xi2, j = · · · = xir , j }. This implies

Pr

(
⋂

i∈I
Di

∣
∣
∣
∣∣
x�,�∈I

)

=
∑

y∈⋂i∈I Di

PY|X(y|xi1) (119)

=
n∑

N=d(M,n)I

(n − d(M,n)I
N− d(M,n)I

)
δN(1− δ)n−N (120)

= δd(M,n)I . (121)

B. Optimal Codes With Three or Four Codewords (M = 3, 4)

We start to investigate the optimal codes for M = 3, since
the optimal code for M = 2 on a BEC is quite trivially the
repetition code.

Even though we know the exact average error probability
for a code with an arbitrary number of codewords M on a
BEC, the optimal code structure is not obvious. We are now
trying to shed more light on this problem.

We start with the following lemma.
Lemma 50 [19, Lem. 32]: Fix the number of codewords

M and a DMC. The success probability Pc(C (M,n)) for a
sequence of codes {C (M,n)}n≥1, where each code is generated
by appending a column to the code of smaller blocklength, is
nondecreasing with respect to the blocklength n.

Proof: See [19, Sec. VIII-B].
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Lemma 50 suggests a recursive code construction that
guarantees the largest total success probability increase,19 i.e.,
we can find some locally optimal code type.

Theorem 51: For a BEC with arbitrary erasure probability
0≤ δ < 1, an optimal code with three codewords M = 3 or four
codewords M = 4 and with a blocklength n = 2 is

C (M,2)∗
BEC =

⎧
⎨

⎩

(
c(M)1 c(M)2

)
if M = 3

(
c(M)3 c(M)5

)
if M = 4.

(122)

If we recursively construct a locally optimal codebook with
three codewords M = 3 or four codewords M = 4 and with a
blocklength n ≥ 3 by appending a new column to C (M,n−1)�

BEC ,
where we append a “�” to (M, n) to denote a locally optimal
recursive-constructed code of size M and length (n − 1), the
increase in average success probability is maximized by the
following choice of appended columns:

⎧
⎪⎨

⎪⎩

c(M)3 if n mod 3 = 0

c(M)1 if n mod 3 = 1

c(M)2 if n mod 3 = 2,

when M = 3 (123)

and
⎧
⎪⎨

⎪⎩

c(M)6 if n mod 3 = 0

c(M)3 if n mod 3 = 1

c(M)5 if n mod 3 = 2,

when M = 4. (124)

Proof: See Appendix A.
This theorem suggests that for a given fixed code size M,

a sequence of good codes can be generated by appending the
correct columns to a code of smaller blocklength. For a given
DMC and code of blocklength n, we ask the question what is
the optimal improvement (i.e., the maximum reduction of error
probability) when increasing the blocklength from n to n + 1
when M = 3 or 4. (Note that in general one might achieve
better results if we design a sequence of codes that increases
from blocklength n to n+ γ with a step-size γ > 1; however,
as we will see below, for M = 3 or M = 4, γ = 1 turns out
to be optimal.) The answer to this question then leads to the
recursive construction of (123) and (124).

While Theorem 51 only guarantees local optimality for the
given recursive construction, further investigation shows that
the given construction is actually globally optimum.

Theorem 52: For a BEC and for any n ≥ 2, an optimal
codebook with M = 3 or M = 4 codewords is the weak flip
code of type t∗weak, where for M = 3

t∗1 =
⌊n + 2

3

⌋
, t∗2 =

⌊n + 1

3

⌋
, t∗3 =

⌊n

3

⌋
(125)

and for M = 4

t∗3 =
⌊n + 2

3

⌋
, t∗5 =

⌊n + 1

3

⌋
, t∗6 =

⌊n

3

⌋
. (126)

Note that the recursively constructed code of Theorem 51 is
equivalent to the optimal code given here:

C (M,n)�
BEC ≡ C (M,n)

t∗weak
. (127)

19See [19, Def. 33].

Proof: See Appendix B.
Using the shorthand

k �
⌊n

3

⌋
(128)

the code parameters of these optimal codes can be summarized
as

t∗weak =
{
[t∗1 , t∗2 , t∗3 ] for M = 3

[t∗3 , t∗5 , t∗6 ] for M = 4
(129)

=

⎧
⎪⎨

⎪⎩

[k, k, k] if n mod 3 = 0

[k + 1, k, k] if n mod 3 = 1

[k + 1, k + 1, k] if n mod 3 = 2.

(130)

From (123) and (124), or from (125) and (126), or from (129),
we confirm again that C (3,n)

t∗weak
can be obtained by simply remov-

ing the last codeword of C (4,n)
t∗weak

(compare with Remark 14).
The corresponding optimal average error probabilities are

given as

Pe

(
C (M,n)

t∗weak

)

=
{

1
3

(
δn−t∗1 + δn−t∗2 + δn−t∗3 − δn

)
if M = 3

1
4

(
2δn−t∗3 + 2δn−t∗5 + 2δn−t∗6 − 3δn

)
if M = 4.

(131)

C. A Brief Comparison Between BSC and BEC

In [19], it has been shown that the optimal codes for
M = 3 or M = 4 for the BSC are weak flip codes with
type

t∗weak =

⎧
⎪⎨

⎪⎩

[k + 1, k, k − 1] if n mod 3 = 0

[k + 1, k, k] if n mod 3 = 1

[k + 1, k + 1, k] if n mod 3 = 2

(132)

which by (130) immediately gives the following corollary.
Corollary 53: For M = 3 or M = 4 and for n mod 3 
=

0, the weak flip codes with type t∗weak defined in (132)
(equivalently, (130)) are optimal for both BSC and BEC.

The corresponding pairwise Hamming distance vectors of
the BSC optimal codes for M = 3 and M = 4 are respec-
tively20

d(3,n)∗ =

⎧
⎪⎨

⎪⎩

(2k − 1, 2k, 2k + 1) if n mod 3 = 0

(2k, 2k + 1, 2k + 1) if n mod 3 = 1

(2k + 1, 2k + 1, 2k + 2) if n mod 3 = 2

(133)

and

d(4,n)∗

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2k − 1, 2k, 2k + 1, 2k + 1, 2k, 2k − 1)

if n mod 3 = 0

(2k, 2k + 1, 2k + 1, 2k + 1, 2k + 1, 2k)

if n mod 3 = 1

(2k + 1, 2k + 1, 2k + 2, 2k + 2, 2k + 1, 2k + 1)

if n mod 3 = 2.

(134)

20For weak flip codes with M = 3 or M = 4 codewords, we only need
to compare the pairwise Hamming distances because the 3-wise and 4-wise
Hamming distances are all equal to n and hence are identical.
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Comparing these to the corresponding pairwise
Hamming distance vectors of the BEC optimal codes
(Theorem 52),

d(3,n)∗ =

⎧
⎪⎨

⎪⎩

(2k, 2k, 2k) if n mod 3 = 0

(2k, 2k + 1, 2k + 1) if n mod 3 = 1

(2k + 1, 2k + 1, 2k + 2) if n mod 3 = 2

(135)

and

d(4,n)∗

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2k, 2k, 2k, 2k, 2k, 2k)

if n mod 3 = 0

(2k, 2k + 1, 2k + 1, 2k + 1, 2k + 1, 2k)

if n mod 3 = 1

(2k + 1, 2k + 1, 2k + 2, 2k + 2, 2k + 1, 2k + 1)

if n mod 3 = 2

(136)

we note that when n mod 3 = 0, the optimal codes for the
BEC are fair and therefore maximize the minimum Hamming
distance, while this is not the case for the very symmetric
BSC (i.e, on the BSC, an optimal code of length n mod 3 = 0
does not maximize the minimum Hamming distance among
all code designs of the same size and length!). In fact, for
M = 3 or 4 and for every n, a code maximizes the minimum
Hamming distance if, and only if, it is an optimal code for
the BEC. However, when M > 4, numerical evidence can be
created to disprove the statement that a code maximizing the
minimum Hamming distance is an optimal code for the BEC!
As we will see in the cases of M = 8 and 16, the pairwise
Hamming distance vector (2-wise Hamming distance) is not
sufficient for determining global optimality, but the r -wise
Hamming distances with r > 2 have to be taken into
account.

D. Application to Known Bounds on the Error Probability
for a Finite Blocklength (M = 3, 4)

Since we now know the optimal code structure, we can
compare its performance to the known bounds in Section III.

Note that for M = 3, 4,

D(BEC)
min

(
C (M,n)

t∗weak

)

=

⎧
⎪⎪⎨

⎪⎪⎩

− 2
3 log δ if n mod 3 = 0

−� n
3 �+� n+1

3 �
n log δ if n mod 3 = 1

−� n
3 �+� n+1

3 �
n log δ if n mod 3 = 2.

(137)

Figures 2 and 3 compare the exact optimal performance for
M = 3 and M = 4, respectively, with the following bounds:
the SGB upper and lower bounds based on the optimal code
as used by Shannon et al. for a blocklength n mod 3 = 0
(thereby confirming that this lower bound is valid generally),
the Gallager upper bound, and also the PPV upper and lower
bounds.

We can see that the SGB upper bound is closer to the exact
optimal performance (and hence tighter) than the PPV upper
bound and the Gallager upper bound. Note that the PPV upper

Fig. 2. Exact value of, and bounds on, the performance of an optimal code
with M = 3 codewords on the BEC with δ = 0.3 as a function of the
blocklength n.

Fig. 3. Exact value of, and bounds on, the performance of an optimal code
with M = 4 codewords on the BEC with δ = 0.3 as a function of the
blocklength n.

bound is not exactly the same as the Gallager upper bound,
even though for M = 3 their curves look almost identical. Also
note that the SGB upper bound does exhibit the correct error
exponent. It is shown in [23] that when n goes to infinity under
fixed M, the PPV upper bound only tends to the suboptimal
Gallager exponent [20]; this fact is also confirmed by the two
figures.

Regarding the lower bounds we see that the PPV lower
bound is much better for finite n than the SGB lower bound.
However, the exponential growth rate of the PPV lower bound
only approaches that of the sphere-packing bound [24], and
does not equal the optimal exponent either [21].
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Once more we would like to emphasize that even though
for M = 3, 4, the fair weak flip codes are optimal for the BEC
and achieve the optimal error exponent for both the BEC and
the BSC, they are strictly suboptimal for every n mod 3 = 0
for the BSC.

E. Optimal Codes With Five or Six Codewords (M = 5, 6)

The idea of recursively designing a locally optimal code
turned out to be a powerful approach to obtain globally
optimal codes for M = 3, 4. Unfortunately, for larger val-
ues of M, we might need a recursion from n to n + γ
with a step-size γ > 1, and—according to our numeri-
cal examination— this step-size γ might be a function of
the blocklength n. Since the exact average error probability
expression becomes involved as M grows, we only succeeded
in investigating a locally optimal code construction subject
to the recursive design approach when the blocklength n
is a multiple of L. Based on our definition of fair weak
flip codes and on Conjecture 54 below, we conjecture21

that the necessary step-size for global optimality satisfies
γ ≤ L.

Conjecture 54: For a BEC and for any n being a mul-
tiple of L = 10, an optimal codebook with M =
5 or M = 6 codewords is the corresponding fair weak flip
code.

Note that the restriction on n stems from the fact that fair
weak flip codes are only defined for blocklengths satisfying
n mod L = 0 (the code uses each weak flip column τ times,
where τ = n/L is an integer). We can show that if we relax
the error minimization problem by allowing noninteger values
for the type t, the optimal type will be equally distributed
among all possible weak flip columns also when n mod L 
=
0. Unfortunately, a block code always must use an integer
number of candidate columns, and the globally optimal choice
of an integer in the neighborhood of the optimal noninteger
value is rather involved. Based on this observation and on
our extensive numerical examinations, we give the following
conjecture.

Conjecture 55: Consider the BEC and a blocklength n ≥
3 that is not a multiple of L = 10 (as the case of n mod
10 = 0 has been taken care in Conjecture 54), and define the
shorthand

τ �
⌊ n

10

⌋
. (138)

An optimal code that minimizes the average error probability
among all code designs with M = 5 codewords is a weak

21Note that in the following conjectures, despite of Conjecture 55, we actu-
ally can prove local optimality of the proposed type vector by verifying
the Karush–Kuhn–Tucker (KKT) conditions. However, since the discrete
multivariate average error probability function is not convex, we did not
succeed in confirming global optimality.

flip code of type

tweak =
[
t3, t5, t6, t7, t9, t10, t11, t12, t13, t14

]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
τ + 1, τ, τ, τ, τ, τ, τ, τ, τ, τ

]

if n mod 10 = 1
[
τ + 1, τ + 1, τ + 1, τ − 1, τ, τ, τ, τ, τ, τ

]

if n mod 10 = 2
[
τ + 1, τ + 1, τ, τ, τ + 1, τ, τ, τ, τ, τ

]

if n mod 10 = 3
[
τ + 1, τ + 1, τ, τ, τ + 1, τ, τ, τ, τ, τ + 1

]

if n mod 10 = 4
[
τ + 1, τ + 1, τ + 1, τ, τ + 1, τ + 1, τ, τ, τ, τ

]

if n mod 10 = 5
[
τ + 1, τ + 1, τ + 1, τ, τ + 1, τ + 1, τ,

τ + 1, τ, τ
]

if n mod 10 = 6
[
τ + 1, τ + 1, τ + 1, τ, τ + 1, τ + 1, τ,

τ, τ + 1, τ + 1
]

if n mod 10 = 7
[
τ + 2, τ + 1, τ + 1, τ, τ + 1, τ + 1, τ,

τ, τ + 1, τ + 1
]

if n mod 10 = 8
[
τ + 1, τ + 1, τ + 1, τ + 1, τ + 1, τ + 1, τ + 1,

τ + 1, τ + 1, τ
]

if n mod 10 = 9.
(139)

Except for n mod 10 = 7, an optimal code that minimizes the
average error probability among all code designs with M = 6
codewords is a weak flip code of type

tweak =
[
t7, t11, t13, t14, t19, t21, t22, t25, t26, t28

]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
τ + 1, τ, τ, τ, τ, τ, τ, τ, τ, τ

]

if n mod 10 = 1
[
τ + 1, τ + 1, τ, τ, τ, τ, τ, τ, τ, τ

]

if n mod 10 = 2
[
τ + 1, τ + 1, τ, τ, τ, τ + 1, τ, τ, τ, τ

]

if n mod 10 = 3
[
τ + 1, τ + 1, τ, τ, τ, τ + 1, τ, τ + 1, τ, τ

]

if n mod 10 = 4
[
τ + 1, τ + 1, τ, τ, τ + 1, τ + 1, τ, τ + 1, τ, τ

]

if n mod 10 = 5
[
τ + 1, τ + 1, τ + 1, τ, τ + 1, τ + 1, τ, τ + 1, τ, τ

]

if n mod 10 = 6
[
τ + 1, τ + 1, τ + 1, τ + 1, τ + 1, τ + 1, τ + 1,

τ + 1, τ, τ
]

if n mod 10 = 8
[
τ + 1, τ + 1, τ + 1, τ + 1, τ + 1, τ + 1, τ + 1,

τ + 1, τ + 1, τ
]

if n mod 10 = 9.

(140)
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For n mod 10 = 7 and M = 6, an optimal code that minimizes
the average error probability among all code designs is actually
not a weak flip code but a nonweak flip code of type t
satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t14 = t22 = t26 = t28 = τ
t7 = t11 = t13 = t19 = t21 = t25 = τ + 1

t30 = 1

t j = 0 for the remaining indices.

(141)

Note that t30 is the only nonweak flip column in this
code.

Surprisingly, the optimal code for n mod 10 = 7 and
M = 6 is not a weak flip code. We point out again that the
exact average error probability expression for the BEC with
M = 6 is a function of the discrete multivariate nonnegative
integers t1, t2, . . . , t31 under the constraint that their sum
equals n. If we allow noninteger solutions, the minimizers
are t j = n/L for all t j belonging to weak flip columns.
Yet, (141) shows that the nearest integer minimizer might
be a only “nearly weak flip” code instead of a weak flip
code.

Note that according to Conjecture 55, it is possible to
recursively construct optimal codes with M = 5, 6 codewords
using a step size γ < 10.

For our quest of understanding the optimal code design for
larger M, we believe that it will be useful to substantiate these
observations further.

F. Codes With Large r-Wise Hamming Distances for
Arbitrary M

We have already pointed out that a code having a large (or
even maximum) pairwise Hamming distance is not necessarily
an optimal code. It is crucial to look at all r -wise Hamming
distances for 2 ≤ r ≤ �̄.

In the following theorem we will confirm this intuition once
again.

Theorem 56: Let the number of codewords be M = 2�̄ or
2�̄−1 where �̄ is an arbitrary positive even integer, and let the
blocklength n be such that n mod L = 0. Then an (�̄−1)-wise
equidistant weak flip code that achieves the largest minimum
(�̄−1)-wise Hamming distance22 but not the largest minimum
�̄-wise Hamming distance has a strictly worse performance on
the BEC than the fair weak flip code.

Proof: We will prove the theorem only for the case of
M = 2�̄ − 1, the case of M = 2�̄ will be similar. So, let
M = 2�̄ − 1 with �̄ even and let the blocklength be n = Lτ
for some τ ∈ N. Let C (M,n)

t◦weak
be an (�̄ − 1)-wise equidistant

weak flip code that achieves the largest minimum (�̄−1)-wise
Hamming distance, but does not achieve the largest minimum
�̄-wise Hamming distance, and let C (M,n)

fair be the fair weak
flip code that according to Corollary 46 is �̄-wise equidistant
and achieves the largest minimum �̄-wise Hamming distance.

22By Theorem 45 such a weak flip code also is s-wise equidistant and
maximizes the s-wise Hamming distances for all 2 ≤ s ≤ �̄− 1.

Therefore, according to Theorem 45 and Theorem 49, we have

Pe

(
C (M,n)

t◦weak

)
− Pe

(
C (M,n)

fair

)

= 1

M

M∑

r=2

(−1)r
∑

I⊆{1,...,M} :
|I|=r

δ
dI
(
C (M,n)

t◦weak

)

− 1

M

M∑

r=2

(−1)r
∑

I⊆{1,...,M} :
|I|=r

δ
dI
(
C (M,n)

fair

)

(142)

= (−1)�̄

M

∑

I⊆{1,...,M} :
|I|=�̄

δ
dI
(
C (M,n)

t◦weak

)

− (−1)�̄

M

∑

I⊆{1,...,M} :
|I|=�̄

δ
dI
(
C (M,n)

fair

)

(143)

= 1

M

L∑

w=1

δ
n−t◦jw − 1

M
· L · δn− n

L (144)

= L
M
δn

⎡

⎣ 1

L

L∑

w=1

δ
−t◦jw − δ−τ

⎤

⎦ (145)

>
L
M
δn

⎡

⎢
⎣

⎛

⎝
L∏

w=1

δ
−t◦jw

⎞

⎠

1
L

− δ−τ
⎤

⎥
⎦ (146)

= L
M
δn
[
δ
− 1

L

∑L
w=1 t◦jw − δ−τ

]
(147)

= L
M
δn
[
δ−

n
L − δ−τ

]
(148)

= 0. (149)

Here, the second equality follows because the distance struc-
ture of the two codes only differ in the case of r = �̄ (and
�̄ must be even in order to make the difference positive); in
the subsequent equality we use the type vector to express the
�̄-wise Hamming distances of both codes and also use the
fact that �̄ is even; the inequality holds because the arithmetic
mean (AM) is strictly larger than the geometric mean (GM);
and finally we note that

∑L
w=1 t◦jw = n. Note that since we

assume that C (M,n)
t◦weak

does not achieve the �̄-wise Plotkin bound,
it follows that there must exist some t◦jw 
= τ and therefore
the inequality is strict.

G. Linear vs. Nonlinear Codes

In this work, we are not really interested in linear codes as
our focus lies on optimality in the sense of smallest average
error probability. Nevertheless it is important to show the
superiority of our proposed weak flip codes. To that goal we
will next compare linear codes with nonlinear weak flip codes
for the case of M = 8 and M = 16. We will see that best
linear codes are often strictly suboptimal.

1) Comparisons for M = 8: The following example shows
that the fair linear code with M = 8 codewords, which only
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achieves the 2-wise Plotkin bound, is strictly suboptimal on
the BEC.

Example 57: Consider the fair linear code and the (non-
linear) fair weak flip code for M = 23 and n = 35. From
Theorem 49 we obtain

Pe

(
C (8,35)

lin,fair

)
= 1

8

((
8

2

)
δn−15 −

(
8

3

)
δn−5 + 14δn−5

+
((

8

4

)
− 14

)
δn −

(
8

5

)
δn +

(
8

6

)
δn

−
(

8

7

)
δn +

(
8

8

)
δn
)

(150)

and from Corollary 40 and also Theorem 49, we get

Pe

(
C (8,35)

fair

)

= 1

8

((
8

2

)
δn−15 −

(
8

3

)
δn−5 +

(
8

4

)
δn−1

−
(

8

5

)
δn +

(
8

6

)
δn −

(
8

7

)
δn +

(
8

8

)
δn
)
. (151)

Thus,

Pe

(
C (8,35)

lin, fair

)
− Pe

(
C (8,35)

fair

)
= 14

8

(
δn−5 + 4δn − 5δn−1

)

(152)

which can be seen to be strictly positive using an argument
similar to the proof of Theorem 56 (AM–GM inequality).
Hence, the fair linear code with dimension k = 3 and
blocklength n = 35 is not optimal. ♦

Actually, this example can be generalized to any blocklength
being a multiple of 7 except n = 7. The derivation (which
is given in Appendix C) is based on elaborately extracting
n columns from the codebook matrix of a fair weak flip
code with blocklength larger than n to form a new (8, n)
nonlinear code (that actually is a concatenation of several
nonlinear Hadamard codes). The technique fails for n = 7
because taking any seven columns from the code matrix of
the (8, 35) fair weak flip code always results in a Hadamard
linear code. Also note that since there are no Hadamard codes
for any blocklength n mod 7 
= 0, the technique fails again for
n mod 7 
= 0.23

Theorem 58: For n mod 7 = 0 apart from n = 7, the fair
linear code with M = 8 codewords is strictly suboptimal over
the BEC.

Proof: Since fair weak flip codes are only defined for
n = 35τ , where τ ∈ N, we propose the so-called generalized
fair weak flip code for all blocklengths n mod 7 = 0 apart
from n = 7 and n = 35τ . We then show that this nonlinear
code and fair weak flip code have a better performance than
the corresponding fair linear code over the BEC. Note that
the minimum 4-wise Hamming distance of the generalized
fair weak flip code and fair weak flip code are always larger

23Hadamard codes allow for the exact computation of the complete r-wise
Hamming distance structure. In the case of an arbitrary weak flip code this
is rather involved.

than the minimum 4-wise Hamming distance of the fair linear
code. The details are given in Appendix C.

It is interesting that for M = 8 and for all blocklengths
n mod 35 = 0, the fair linear code and the fair weak flip
code both are 2-wise and 3-wise equidistant and both achieve
the 2-wise and the 3-wise Plotkin bounds. However, only the
fair weak flip code is also 4-wise equidistant and achieves the
4-wise Plotkin bound. This is in agreement with Theorem 56
and explains why the fair linear code is outperformed on the
BEC.

Based on these insights, we actually believe that the fair
weak flip code is globally optimal and that the generalized fair
weak flip codes outperform the best linear codes for M = 8.

In general, for blocklengths n mod L 
= 0, the situation
is unclear because the optimal discrete solution to the “fair
noninteger” distribution among all weak flip columns might
even end up with nonweak flip columns (compare with Con-
jecture 55). Still, we have numerical evidence that the best
found weak flip codes are superior to the best linear codes.
We are next going to elaborate on this.

The best linear codes for M = 8 and any blocklength n ≤ 35
are found by an exhaustive search over all possible linear code
parameters tlin such that

t∗lin = min
tlin

{
Pe

(
C (8,n)

tlin

)}

where
∑7
�=1 t j� = n. Unfortunately, the same approach does

not work for the weak flip codes, because we need to choose
from 35 weak flip columns, which results in a too high com-
plexity for an exhaustive search. Instead, we use a simulated
annealing algorithm [30] to determine a good weak flip code
type t�weak (which therefore is not guaranteed to be optimal).
This simulated annealing algorithm is briefly summarized as
follows.

Step 1: We randomly choose n columns c(M)j ∈ C(M)weak to

form a weak flip code C (M,n)
weak =

[
c(M)j1

, · · · , c(M)jn

]
.

We compute the corresponding tweak and error prob-
ability Pe

(
C (M,n)

tweak

)
according to (111). We set a

temperature T← Ts.
Step 2: We randomly select two distinct w,w� such that

c(M)jw
∈ C (M,n)

weak and c(M)jw� ∈ C(M)weak \ C (M,n)
weak , and

obtain a new code C (M,n)�
weak by replacing c(M)jw

with

c(M)jw� . For this new code we compute the code type
t�weak and the difference in error probability 
P =
Pe
(
C (M,n)

t�weak

) − Pe
(
C (M,n)

tweak

)
. If 
P < 0, we replace

tweak by t�weak for sure; otherwise, we replace tweak

by t�weak with probability e−
P/T.
Step 3: We repeat Step 2 until either the number of column

replacements or the number of iterations exceeds
some prescribed number.

Step 4: We lower the temperature T← αT for some α < 1,
and return to Step 2 until we either observe a stable
code configuration or the temperature is lower than
a freezing temperature Tf.

Table I lists the resulting minimum r -wise Hamming dis-
tances for r = 2, 3, 4 for both t∗lin and t�weak for 8 ≤ n ≤ 34
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TABLE I

THE MINIMUM r -WISE HAMMING DISTANCES OF THE BEST FOUND WEAK
FLIP CODES AND THE BEST LINEAR CODES WITH M = 8 FOR

8 ≤ n ≤ 35. NOTE THAT FOR ANY BLOCKLENGTH n,
THE PERFORMANCE OF C (8,n)

t�weak
IS ALWAYS

STRICTLY BETTER THAN C (8,n)
t∗lin

even and also for n being a multiple of 7. Note that for n ≤ 7,
t�weak is equivalent to t∗lin.

We observe that the found best weak flip codes always have
a larger 4-wise Hamming distance and that dmin;4 increases as
n grows. This is consistent with Theorem 58.

2) Comparisons for M = 16: If we increase the number
of codewords to M = 16, the number of weak flip columns
increases to L = (15

8

) = 6435. This turns out to be too
large even for the simulated annealing algorithm used in
Section V-G.1. So, we had to reduce complexity further. In the

following we are going to explain an alternative method of
searching for a well-performing weak flip code with large
r -wise Hamming distances. The idea is to take a fair linear
code with M = 16 codewords and with the short blocklength
K = 15, and to concatenate κ copies of this code with ran-
domly permuted codewords. By numerically searching through
many such codes and picking the best one, one obtains a
good weak flip code. Note that this algorithm can be used to
create nonlinear weak flip codes of any blocklength satisfying
n mod K = 0 (apart from n = K, for which the code will be
linear).

Step 1: We choose an initial fair linear code C (M,K)
lin,fair of

blocklength n = K (this can always be done in
a fashion similar to Example 25). We fix some
κ ∈ N \ {1} and set p← 1.

Step 2: We create κ − 1 codebooks C (M,K)
j , j = 2, . . . , κ ,

by randomly permuting the codewords of C (M,K)
lin,fair

except the all-zero codeword (which remains on first
position). Then we concatenate C (M,K)

lin,fair with these
κ − 1 codebooks to obtain a length-(κK) code:

C (M,κK)
weak = [

C (M,K),C (M,K)
2 , . . . ,C (M,K)

κ

]
.

We compute the corresponding Pe
(
C (M,Kκ)

weak

)

(using (111)), and if Pe
(
C (M,Kκ)

weak

)
< p, we replace

any previously stored code by this one and set
p← Pe

(
C (M,Kκ)

weak

)
.

Step 3: We repeat Step 2 until a prescribed number of
iterations has been performed.

Note that Proposition 21 guarantees that the created code
C (M,Kκ)

weak is a weak flip code. Moreover, since we fix the first
K columns of C (M,Kκ)

weak , the resulting code is only linear if it
is a fair linear code, which happens only with a very small
probability equal to

( 1
M!
)κ−1.

In order to find a good code, we choose as initial code a
fair linear code that achieves the largest minimum pairwise
Hamming distance. The results are summarized in Table II(a).

For blocklengths n < 30 (for which n 
= κK with κ ∈ N\{1}
and K = 15, and hence the above algorithm does not work)
we start with the weak flip columns taken from the best weak
flip code C (16,30)

weak obtained with the above algorithm and then
apply a modified version of the simulated annealing algorithm
from Section V-G.1 (in Step 1 C(M)weak is replaced by the weak
flip columns taken from C (16,30)

weak ) to determine t�weak. For the
best linear code we use simulated annealing to obtain the best
punctured linear code by deleting 30−n coordinates from the
fair linear code C (16,30)

lin,fair . This yields Table II(b).
Table II again validates our quality criterion of good codes:

large minimum r -wise Hamming distances. The found nonlin-
ear weak flip codes are always superior to the corresponding
best linear codes and they all have larger minimum r -wise
Hamming distances for some r > 2 than the corresponding
best linear codes. We can also see that for some r ≥ 4,
the difference between the dmin;r of the best weak flip code
and the dmin;r of the best linear code increases when n grows.



5212 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

TABLE II

THE MINIMUM r -WISE HAMMING DISTANCES OF THE BEST FOUND WEAK
FLIP CODES AND THE BEST LINEAR CODES WITH M = 16 FOR

CERTAIN VALUES OF n. NOTE THAT FOR ANY BLOCKLENGTH n,
THE PERFORMANCE OF C (16,n)

t�weak
IS ALWAYS STRICTLY BETTER

THAN C (16,n)
t�lin

. (a) n = κK WITH κ ∈ N \ {1}
AND K = 15. (b) 16 ≤ n ≤ 28

VI. CONCLUSION

In this paper we have broken away from traditional coding
theory that focuses on finding codes with sufficient structure
(like linearity) to allow efficient encoding and decoding and
that analyzes such codes’ performance for large blocklengths.
Instead we have put our emphasis on optimal design in the
sense of minimizing the average error probability (under ML
decoding) for any finite blocklength. To that goal we have
proposed a column-wise approach to the codebook matrix
that allows us to define families of codes with interest-
ing properties. Also based on the column-wise analysis of
codebooks, we have further proposed an extension to the
pairwise Hamming distance, called r-wise Hamming distance,

investigated its properties and proven that it is a key factor
to determine the exact error probability of a binary code of
arbitrary blocklength n on a BEC.

We have introduced the weak flip codes, a new class of
codes containing both the class of binary nonlinear Hadamard
codes and the class of linear codes as special cases. We have
shown that weak flip codes have many desirable properties; in
particular, we have succeeded in proving that besides retaining
many of the good Hamming distance properties of Hadamard
codes, they are actually optimal with respect to the minimum
error probability over a BEC for certain numbers of codewords
M and many finite blocklengths n.

The family of fair weak flip codes—a subclass of the
nonlinear weak flip codes—can be seen as a generalization of
linear codes to arbitrary numbers of codewords M. We have
shown that fair weak flip codes are optimal with respect to
the average error probability for the BEC for M ≤ 4 and a
blocklength that is a multiple of L and we have conjectured
that this result continues to hold also for M > 5. Furthermore,
we have also shown that the optimal code performance is really
close to the upper bound of Shannon–Gallager–Berlekamp on
the BEC for M ≤ 4, while for the BSC this is not the case.

Note that it has been known for quite some time that binary
nonlinear Hadamard codes have good Hamming distance
properties [12]; however, their behavior with respect to error
probability for finite blocklength remained uninvestigated. In
particular, while fair weak flip codes have been used before
(although without being named) in the derivation of results
related to error probability [21] and have been shown to be
best-error-exponent achieving, their global (among all possible
linear or nonlinear codes) optimality with respect to the error
probability was not known so far.

In conclusion, this paper tries to build a bridge between
coding theory, which usually is concerned with the design
of codes with good Hamming distance properties (like, e.g.,
the binary nonlinear Hadamard codes), and information theory,
which deals with error probability and with the existence of
codes that have good or optimal error probability behavior
(even though often in the asymptotic sense for very large
blocklengths). Our results suggest that in order to have good
performance in the finite blocklength regime for the BEC, one
must find a code design with large minimum r -wise Hamming
distances for all r ∈ {2, 3, . . . , �̄}.

APPENDIX A
PROOF OF THEOREM 51

We refer to [19, Def. 33] and define

Pc
(
C (M,n+γ ))

= Pc
(
C (M,n))

+ 1

M

M∑

m=1

∑

y(n+γ )
s.t. y(n)∈D(M,n)

m

but y(n+γ )∈D(M,n+γ )
m�

for some m� 
=m

(
PY|X

(
y(n+γ )

∣
∣
∣x(n+γ )m�

)

− PY|X
(
y(n+γ )

∣∣x(n+γ )m
))

(153)
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� Pc
(
C (M,n))+
�(C (M,n+γ )). (154)

In the proof of Theorem 51, our goal is to maximize the total
probability increase
�

(
C (M,n+γ )) among all possible C (M,γ )

with γ = 1 for M = 3, 4. Note that the codebook C (M,n+γ )
is formed by concatenating C (M,n) with C (M,γ ). The proof
is based on induction and follows along the same lines as
in the proof for the BSC shown in [19, App. C.A] with some
modifications that take into account the details of the decoding
rule for the BEC. Similarly to [19, App. C.A], we need a case
distinction depending on n mod 3. For space reason, we only
outline the case from n − 1 = 3k − 1 to n = 3k. Moreover,
we only consider the more complicated case of M = 4. Similar
arguments can be applied to M = 3.

We start with the code C (4,n−1)
t�weak

, whose type is as follows:

t�weak = [t�3 , t�5 , t�6 ] = [k, k, k − 1] (155)

and need to pick a candidate columns from C(4) to append to
C (4,n−1)

t�weak
. We require to show that appending c(4)6 yields the

largest total probability increase among all possible candidate
columns in C(4).

To that goal, we investigate how to extend the decoding
regions of C (4,n−1)

t�weak
. For each codeword, there are three

possible extended decoding regions of blocklength n:
[
D(4,n−1)

m 0
]
,
[
D(4,n−1)

m 1
]
,
[
D(4,n−1)

m 2
]
, m = 1, . . . , 4.

(156)

Owing to the fact that for a BEC PY |X (0|1) = PY |X (1|0) = 0,
and using b ∈ {0, 1} to denote the value of the appended bit to
the mth codeword, xm,n = b, we see that the decoding region
D(4,n)

m should include both
[
D(4,n−1)

m b
]

and
[
D(4,n−1)

m 2
]
, and

that all the received vectors in
[
D(4,n−1)

m b̄
]

will be decoded
to one of the other three codewords. Since

ψm
(
C (4,n−1))

= ψm
(
C (4,n−1)) · (1− δ + δ) (157)

= Pr
(
D(4,n−1)

m

∣
∣∣x(n−1)

m

) (
PY |X (b|b)+ PY |X (2|b)

)
(158)

= Pr
([
D(4,n−1)

m b
]∣∣
∣
[
x(n−1)

m b
])

+ Pr
([
D(4,n−1)

m 2
]∣∣
∣
[
x(n−1)

m b
])

(159)

we obtain that
[
D(4,n−1)

m b
]∪ [D(4,n−1)

m 2
]

does not create any
probability increase, i.e., the total probability increase for each
codeword will be determined by how the received vectors in[
D(4,n−1)

m b̄
]

are moved to one of decoding regions of the
other three codewords.

We now investigate each possible appended column in a
case-by-case fashion.

A. Appending c(4)
1

We build a new length-n code C (4,n)
t from the given code

C (4,n−1)
t�weak

by appending c(4)1 = (0 0 0 1) T. The type becomes

t1 = [1, 0, k, 0, k, k − 1, 0]. (160)

We now compute the total probability increase in this case.
Because x4,n = 1 and xm,n = 0 for m = 1, 2, 3, some24 of
the vectors in the extended decoding regions

[
D(4,n−1)

t�weak;m 1
]

for

m = 1, 2, 3 will be moved to D(4,n)
t1;4 (and some of the received

vectors in the extended decoding region
[
D(4,n−1)

t�weak;4 0
]

will be

moved to one of D(4,n)
t1;m , m = 1, 2, 3). The total probability

increase 
�
(
C (4,n)

t1

)
is


�
(
C (4,n)

t1

)

= Pr

([
D
(4,n−1)
4 1

] ∩
([

D
(4,n−1)
1 1

] ∪ [ D
(4,n−1)
2 1

]

∪ [ D
(4,n−1)
3 1

])
∣
∣
∣
∣
[
x(n−1)

4 1
]
)

(161)

= Pr

(

D
(4,n−1)
4 ∩

(
3⋃

m=1

D
(4,n−1)
m

)∣∣
∣∣
∣
x(n−1)

4

)

(1− δ) (162)

= Pr

(
3⋃

m=1

(
D
(4,n−1)
m ∩ D

(4,n−1)
4

)
∣
∣∣
∣
∣
x(n−1)

4

)

(1− δ) (163)

=
(

Pr
(

D
(4,n−1)
1 ∩ D

(4,n−1)
4

∣
∣
∣x(n−1)

4

)

+ Pr
(

D
(4,n−1)
2 ∩ D

(4,n−1)
4

∣∣
∣x(n−1)

4

)

+ Pr
(

D
(4,n−1)
3 ∩ D

(4,n−1)
4

∣
∣
∣x(n−1)

4

)

− Pr
(

D
(4,n−1)
1 ∩ D

(4,n−1)
2 ∩ D

(4,n−1)
4

∣
∣
∣x(n−1)

4

)

− Pr
(

D
(4,n−1)
1 ∩ D

(4,n−1)
3 ∩ D

(4,n−1)
4

∣∣
∣x(n−1)

4

)

− Pr
(

D
(4,n−1)
2 ∩ D

(4,n−1)
3 ∩ D

(4,n−1)
4

∣
∣
∣x(n−1)

4

)

+ Pr
(

D
(4,n−1)
1 ∩ D

(4,n−1)
2

∩ D
(4,n−1)
3 ∩ D

(4,n−1)
4

∣∣
∣ x(n−1)

4

))
(1− δ) (164)

= (
δn−1−t�6 + δn−1−t�5 + δn−1−t�3

− δn−1 − δn−1 − δn−1 + δn−1)(1− δ) (165)

= (
δ2k−1 + δ2k−1 + δ2k − 2δn−1)(1− δ) (166)

where (161) holds because of the definition of the closed
decoding regions and because

[
D
(4,n−1)
4 1

] ∩ [ D
(4,n−1)
m 1

]
,

m = 1, 2, 3, are not empty; (162) is because the BEC is
a DMC; (164) follows directly from applying the inclusion–
exclusion principle; and finally, (165) follows from the same
r -wise Hamming distances perspective as already used in the
derivations of Theorem 49.

B. Appending c(4)
2

The derivations here are similar to the first case (or, indeed,
also for the cases of appending c(4)4 or c(4)7 ), so we omit the

24The reason why we write “some” instead of “all” is that some vectors in[
D(4,n−1)

t�weak;m
1
]

cannot occur and fall out of consideration.
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details and directly state the total probability increase:


�
(
C (4,n)

t2

)

= (
δn−1−t�5 + δn−1−t�6 + δn−1−t�3

− δn−1 − δn−1 − δn−1 + δn−1)(1− δ) (167)

= (
δ2k−1 + δ2k−1 + δ2k − 2δn−1)(1− δ). (168)

C. Appending c(4)
3

If we append c(4)3 = (0 0 1 1) T, the new type for
blocklength n becomes

t3 = [0, 0, k + 1, 0, k, k − 1, 0]. (169)

Since x1,n = x2,n = 0 and x3,n = x4,n = 1, again
using an argument like in the first case, we find that some
received vectors in the extended decoding regions

[
D(4,n−1)

1 1
]

and
[
D(4,n−1)

2 1
]

will be moved to either D(4,n)
3 or D(4,n)

4 .
We obtain a total probability increase


�
(
C (4,n)

t3

)

= Pr

(([
D
(4,n−1)
1 1

] ∪ [ D
(4,n−1)
2 1

])

∩ [ D
(4,n−1)
3 1

]
∣
∣
∣
∣
[
x(n−1)

3 1
]
)

+ Pr

(([
D
(4,n−1)
1 1

] ∪ [ D
(4,n−1)
2 1

])

∩ [ D
(4,n−1)
4 1

]
∣
∣∣
∣
[
x(n−1)

4 1
])

− Pr

(([
D
(4,n−1)
1 1

] ∪ [ D
(4,n−1)
2 1

])

∩
([

D
(4,n−1)
3 1

] ∩ [ D
(4,n−1)
4 1

])
∣
∣
∣∣
[
x(n−1)
�,�∈{3,4} 1

]
)

(170)

=
(

Pr
(

D
(4,n−1)
1 ∩ D

(4,n−1)
3

∣
∣∣x(n−1)

3

)

+ Pr
(

D
(4,n−1)
2 ∩ D

(4,n−1)
3

∣
∣
∣x(n−1)

3

)

− Pr
(

D
(4,n−1)
1 ∩ D

(4,n−1)
2 ∩ D

(4,n−1)
3

∣
∣
∣x(n−1)

3

)

+ Pr
(

D
(4,n−1)
1 ∩ D

(4,n−1)
4

∣
∣∣x(n−1)

4

)

+ Pr
(

D
(4,n−1)
2 ∩ D

(4,n−1)
4

∣
∣
∣x(n−1)

4

)

− Pr
(

D
(4,n−1)
1 ∩ D

(4,n−1)
2 ∩ D

(4,n−1)
4

∣
∣
∣x(n−1)

4

)

− Pr
(

D
(4,n−1)
1 ∩ D

(4,n−1)
3 ∩ D

(4,n−1)
4

∣
∣∣x(n−1)
�,�∈{3,4}

)

− Pr
(

D
(4,n−1)
2 ∩ D

(4,n−1)
3 ∩ D

(4,n−1)
4

∣
∣
∣x(n−1)
�,�∈{3,4}

)

+ Pr
(

D
(4,n−1)
1 ∩ D

(4,n−1)
2

∩ D
(4,n−1)
3 ∩ D

(4,n−1)
4

∣∣
∣ x(n−1)
�,�∈{3,4}

))
(1− δ) (171)

= (
δn−1−t�5 + δn−1−t�6 − δn−1 + δn−1−t�6 + δn−1−t�5

− δn−1 − δn−1 − δn−1 + δn−1)(1− δ) (172)

= (
δ2k−1 + δ2k + δ2k + δ2k−1 − 3δn−1)(1− δ) (173)

where in (170) we use the rule of total probability25; in (171)
we apply the inclusion–exclusion principle; and where (172)
again follows from the r -wise Hamming distances perspective.

D. Appending c(4)
4

Using an argumentation similar to the case of appending
c(4)1 , we have a total probability increase


�
(
C (4,n)

t4

)

= (
δn−1−t�3 + δn−1−t�6 + δn−1−t�5

− δn−1 − δn−1 − δn−1 + δn−1)(1− δ) (174)

= (
δ2k−1 + δ2k + δ2k−1 − 2δn−1)(1− δ). (175)

E. Appending c(4)
5

Using an argumentation similar to the case of appending
c(4)3 , we have a total probability increase


�
(
C (4,n)

t5

)
= (

δn−1−t�3 + δn−1−t�6 − δn−1

+ δn−1−t�6 + δn−1−t�3 − δn−1

− δn−1 − δn−1 + δn−1)(1− δ) (176)

= (
δ2k−1 + δ2k + δ2k

+ δ2k−1 − 3δn−1)(1− δ). (177)

F. Appending c(4)
6

Using an argumentation similar to the case of appending
c(4)3 , we have a total probability increase


�
(
C (4,n)

t6

)
= (

δn−1−t�3 + δn−1−t�5 − δn−1

+ δn−1−t�3 + δn−1−t�5 − δn−1

− δn−1 − δn−1 + δn−1)(1− δ) (178)

= (
δ2k−1 + δ2k−1

+ δ2k−1 + δ2k−1 − 3δn−1)(1− δ). (179)

G. Appending c(4)
7

Using an argumentation similar to the case of appending
c(4)1 , we have a total probability increase


�
(
C (4,n)

t7

)

= (
δn−1−t�3 + δn−1−t�5 + δn−1−t�6

− δn−1 − δn−1 − δn−1 + δn−1)(1− δ) (180)

= (
δ2k−1 + δ2k−1 + δ2k − 2δn−1)(1− δ). (181)

Using the fact that δd is strictly decreasing in d for 0 < δ < 1,
we can conclude that

argmax
1≤ j≤7


�
(
C (4,n)

t j

)
= 6. (182)

This completes the proof. The proofs for n mod 3 = 1 or 2
are similar and omitted.

25Note that
([

D
(4,n−1)
1 1

] ∪ [
D
(4,n−1)
2 1

]) ∩ [
D
(4,n−1)
3 1

]
and

([
D
(4,n−1)
1 1

] ∪ [ D
(4,n−1)
2 1

]) ∩ [ D
(4,n−1)
4 1

]
are not necessarily disjoint.
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APPENDIX B
PROOF OF THEOREM 52

The proof of Theorem 52 is based on the exact average
success probability for a BEC as a function of the type
vector t with a blocklength n = ∑J

j=1 t j . This problem
is then transformed into a discrete multivariate constrained
optimization problem.

We define the region of all possible types t as

T (M) �

⎧
⎨

⎩
t ∈ (N ∪ {0})J :

J∑

j=1

t j = n

⎫
⎬

⎭
. (183)

Our goal is to find the globally optimized type t∗ that satisfies

t∗ = argmin
t∈T (M)

Pe

(
C (M,n)

t

)
. (184)

Applying Theorem 49 for M = 3 or M = 4, we have

Pe

(
C (3,n)

t

)
= 1

3

(
δn−t1 + δn−t2 + δn−t3 − δn); (185)

Pe

(
C (4,n)

t

)
= 1

4

(
δn−(t1+t2+t3) + δn−(t1+t4+t5)

+ δn−(t1+t6+t7) + δn−(t2+t4+t6)

+ δn−(t2+t5+t7) + δn−(t3+t4+t7)

− δn−t1 − δn−t2 − δn−t4 − δn−t7 + δn
)
.

(186)

Since we consider the optimization problem for any fixed
blocklength n and hence δn is a constant, we can reformulate
the discrete multivariate constrained minimization problem as
follows:

minimize f (M)(t) � M
δn

Pe
(
C (M,n)

t

)+ (−1)M+1

subject to t ∈ T (M) (187)

where the minimization objective functions for M = 3 or M =
4 are

f (3)(t) = δ−t1 + δ−t2 + δ−t3 (188)

and

f (4)(t) = δ−t1−t2−t3 + δ−t1−t4−t5 + δ−t1−t6−t7

+ δ−t2−t4−t6 + δ−t2−t5−t7 + δ−t3−t4−t7

− δ−t1 − δ−t2 − δ−t4 − δ−t7 (189)

respectively. Note that we add (−1)M+1 in (187) to simplify
the expression of f (M)(t).

We firstly consider the easier case of M = 3. Taking the
locally optimal type t� from Theorem 51, we will now prove
that it is actually globally optimal for (188). Using t3 = n −
t1 − t2, we have

f (3)(t) = δ−t1 + δ−t2 + δt1+t2−n (190)

≥ 2
√
δ−t1δ−t2 + δt1+t2−n (191)

� 2δ−t + δ2t−n (192)

� h(t) (193)

where (191) holds because the arithmetic mean (AM) is never
smaller than the geometric mean (GM), and in (192) we define

t � (t1 + t2)/2. It can be seen that the function 2δ−t + δn−2t

is convex in t . Hence, its global minimum 3δ−n/3 is given for
the t satisfying

∂

∂ t

(
2δ−t + δ2t−n) != 0 (194)

where “
!=” means “should be equal to,” i.e., the global

minimizer of h(t) is t∗ = n
3 . However, one must be aware

that the minimizer of f (3)(t) must be a positive integer. So,
if n = 3k, taking t∗1 = t∗2 = t∗3 = t∗ trivially achieves the
global minimum of h(t), i.e., 3δ−n/3. In the following we will
investigate the discrete minimizer t∗ for h(t) for the case of
n = 3k + 1. The case n = 3k + 2 is similar and omitted.

Since the function h(t) is convex, the minimizer should be
equal to k or k + 1. Therefore,

min{h(k), h(k + 1)}
= min

{
2δ−k + δ−(k+1), 2δ−(k+1) + δ−(k−1)} (195)

= 2δ−k + δ−(k+1) (196)

= h(k). (197)

Here we again use the AM–GM inequality to show that
2δ−k < δ−(k+1)+ δ−(k−1). Thus the discrete global minimizer
for h(t) is t∗ = k. Finally, since the inequality of (191) is
achievable by [t1, t2, t3] = [k, k, k + 1], we can conclude that
a discrete global minimizer for f (3)(t) is t∗ = [k, k, k + 1].
Note that in Theorem 52, we state that the optimal type
is t∗ = [k + 1, k, k]. It is not difficult to show that the
performance of these two codes is equivalent; so the optimal
codes are not unique when n = 3k + 1.

In the case of M = 4 we must first prove that the globally
optimal type t∗ must satisfy t∗1 = t∗2 = t∗4 = t∗7 = 0 for an
arbitrary blocklength n. This turns out to be quite technical.

We reformulate the optimization problem in (187) as fol-
lows: introducing

u j � δ−t j , 1 ≤ j ≤ J (198)

and noting that 1 ≤ u j ≤ δ−n for 0 < δ < 1, we rewrite (189)
as

g(4)(u) � f (4)(t) (199)

and the optimization region (183) as

U (4) �

⎧
⎨

⎩
u ∈ R

J : u j ≥ 1 and
J∏

j=1

u j = δ−n

⎫
⎬

⎭
. (200)

Note that while T (4) is convex, U (4) is not. We have

g(4)(u)

= u1u2u3 + u1u4u5 + u1u6u7

+ u2u4u6 + u2u5u7 + u3u4u7 − (u1 + u2 + u4 + u7)

(201)

= u1(u2u3 + u4u5 + u6u7 − 1)+ u2u4u6 + u2u5u7

+ u3u4u7 − (u2 + u4 + u7) (202)

≥ u1

(
3(u2u3u4u5u6u7)

1
3 − 1

)
+ u2u4u6 + u2u5u7

+ u3u4u7 − (u2 + u4 + u7) (203)
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= u1

⎛

⎝3

(
δ−n

u1

) 1
3

− 1

⎞

⎠+ u2u4u6 + u2u5u7

+ u3u4u7 − (u2 + u4 + u7) (204)

=
(

3δ−
n
3 u

2
3
1 − u1

)
+ u2u4u6 + u2u5u7

+ u3u4u7 − (u2 + u4 + u7). (205)

Here, (203) follows from the AM–GM inequality, where
equality holds if

u2u3 = u4u5 = u6u7. (206)

In (204), we use the fact that
∏7

j=1 u j = δ−n . The first
term in parentheses on the right-hand-side (RHS) of (205)
is concave and nondecreasing in u1 for 1 ≤ u1 ≤ δ−n , and
independent of the other variables u2, . . . , u7. This implies
that if we want to minimize (205), we should have u∗1 = 1
and the minimization is irrelevant to u∗2, . . . , u∗7. To achieve
equality in (203), we only need to satisfy the condition (206),
which means that u∗1 = 1 is both the discrete global min-
imizer of the RHS of (205) and g(4)(u). Using the same
argument, we can also show that the discrete global optimizer
u∗ must satisfy that u∗1 = u∗2 = u∗4 = u∗7 = 1, i.e.,
t∗1 = t∗2 = t∗4 = t∗7 = 0.

So the discrete multivariate constrained optimization prob-
lem is reduced to

min
tweak∈T (4)

weak

f (4)(tweak) = min
tweak∈T (4)

weak

(
2δ−t3 + 2δ−t5 + 2δ−t6 − 4

)

(207)

where

T (4)
weak �

{
tweak ∈ (N ∪ {0})L : t j ≥ 0, j ∈ {3, 5, 6},

and
∑

j∈{3,5,6}
t j = n

}
. (208)

This problem can be solved in an analogous way as for
M = 3. We obtain

t∗ = t∗weak =
[
t∗3 , t∗5 , t∗6

] =
[⌊n + 2

3

⌋
,
⌊n + 1

3

⌋
,
⌊n

3

⌋]
.

(209)

APPENDIX C
PROOF OF THEOREM 58

The proof is based on the exact average ML error prob-
ability formula expressed as a function of the linear type
vector tlin. Applying Lemma 23 and Theorem 49 for the
general three-dimensional linear code (whose corresponding
r -wise Hamming distances can be derived from Example 25),

we obtain

f (8)(tlin)

� 8

δn
Pe

(
C (8,n)

tlin

)
(210)

= 4
(
u1u2u3 + u1u4u5 + u1u6u7 + u2u4u6

+ u2u5u7 + u3u4u7 + u3u5u6
)

− 8
(
u1 + u2 + u3 + u4 + u5 + u6 + u7

)

+ 2
(
u1 + u2 + u3 + u4 + u5 + u6 + u7

)

+
(

8

4

)
− 14−

(
8

5

)
+
(

8

6

)
−
(

8

7

)
+
(

8

8

)
(211)

= 4
(
u1u2u3 + u1u4u5 + u1u6u7 + u2u4u6

+ u2u5u7 + u3u4u7 + u3u5u6
)

− 6
(
u1 + u2 + u3 + u4 + u5 + u6 + u7

)+ 21 (212)

where for convenience we set

u� � δ−t j� , 1 ≤ � ≤ K = 7. (213)

For a blocklength n = 7κ , we know that the type of the fair
linear code is

t∗j1 = t∗j2 = · · · = t∗j7 = κ. (214)

Plugging this into (212), we obtain that a fair linear code with
blocklength n being a multiple of 7 has

f (8)(t∗lin) = 28δ−3κ − 42δ−κ + 21. (215)

To show that this fair linear code is strictly suboptimal, we start
to find a code of identical size and blocklength that has better
performance. According to Example 57, such a code can be
constructed from the fair weak flip code C (8,n)

fair of blocklength
n mod L = 0 (for M = 8 we have L = 35). By Corollary 40,
a fair weak flip code with blocklength n = 35τ for τ ∈ N and
corresponding type tfair

t j1 = t j2 = · · · = t j35 = τ (216)

satisfies

f (8)(tfair) =
(

8

2

)
δ−15τ −

(
8

3

)
δ−5τ +

(
8

4

)
δ−τ

−
(

8

5

)
+
(

8

6

)
−
(

8

7

)
(217)

= 28δ−15τ − 56δ−5τ + 70δ−τ − 36. (218)

Because no fair weak flip codes are defined for n 
= 35τ ,
we propose a so-called generalized fair weak flip code for
n = 35τ + 7η = 7κ with κ = 5τ + η ≥ 2, τ ∈ N ∪ {0},
0 < η ≤ 4, by carefully choosing n columns from the fair
weak flip code with blocklength 35(τ + 1) > n to form a
new (8, n) nonlinear weak flip code that is a concatenation of
different (8, 7) Hadamard codes. As such, 7η components of
the corresponding type vector t�weak are equal to τ + 1, and
the remaining (35 − 7η) components are equal to τ (so n =
7η(τ + 1)+ (35− 7η)τ = 35τ + 7η). With this generalization
and together with the fair weak flip codes for n mod 35 = 0
(i.e., η = 0), we succeed in showing that there exist nonlinear
codes with a blocklength n = 7κ (κ ≥ 2) that have a better
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performance over the BEC than the corresponding fair linear
codes.

Note that while there are many different (8, 7) Hadamard
codes, they are all equivalent, i.e., they are only row-
and column-permutations of (33). For each of these (8, 7)
Hadamard code, all the pairwise and three-wise Hamming
matches are equal to 3 and 1, respectively; and there are 14
four-wise Hamming matches equal to 1 and

(8
4

)−14 = 56 four-
wise Hamming matches equal to 0. So, when we concatenate
κ different (8, 7) Hadamard codes in order to construct the
(8, 7κ) generalized fair weak flip code, we will automatically
achieve that all pairwise Hamming matches equal to 3κ and
that all three-wise Hamming matches equal to κ . For the four-
wise Hamming matches, we select the Hadamard carefully to
minimize the resulting four-wise Hamming matches. Indeed,
we repetitively append the (8, 7) Hadamard code η times to
the fair weak flip code with n = 35τ to create an (8, n =
35τ + 7η = 7κ) generalized fair weak flip code such that 14η
four-wise Hamming matches equal to τ + 1 and 70 − 14η
four-wise Hamming matches equal to τ .

Hence, we see that

f (8)(t�weak) = 28δ−3κ − 56δ−κ

+ 14ηδ−(τ+1) + (70− 14η)δ−τ − 36. (219)

The proof is completed if one can show that except for κ = 1
(i.e., τ = 0 and η = 1),

f (8)(t∗lin)− f (8)(t�weak)

= 14
[
(δ−κ + 4)− (ηδ−(τ+1) + (5− η)δ−τ )

]
> 0. (220)

To that goal define u � δ−1 > 1, and rewrite the terms in the
bracket on the RHS of (220) as

p(u) � u5τ+η + 4− ηuτ+1 − (5− η)uτ . (221)

Observe that p(1) = 0 and that for τ = 0,

∂p(u)

∂u
= ηuη−1 − η > 0, if η 
= 1 (222)

(where the inequality holds because u > 1) and for τ ≥ 1,

∂p(u)

∂u
= (5τ + η)u5τ+η−1 − η(τ + 1)uτ

− (5τ − ητ)uτ−1 (223)

> (5τ + η)u5τ+η−1 − η(τ + 1)uτ−1

− (5τ − ητ)uτ−1 (224)

= (5τ + η)u5τ+η−1 − (5τ + η)uτ−1 (225)

≥ 0 (226)

(where the inequalities again hold because u > 1). This
implies that p(u) is strictly larger than zero unless κ = 1.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, 1948.

[2] S. Lin and D. J. Costello, Jr., Error Control Coding, 2nd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2004.

[3] C.-L. Wu, P.-N. Chen, Y. S. Han, and Y.-X. Zheng, “On the coding
scheme for joint channel estimation and error correction over block
fading channels,” in Proc. IEEE Int. Symp. Pers., Indoor Mobile Radio
Commun., Tokyo, Japan, Sep. 13–16, 2009, pp. 1272–1276.

[4] G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and
low-latency wireless communication with short packets,” Proc. IEEE,
vol. 104, no. 9, pp. 1711–1726, Aug. 2016.

[5] V. Skachek, “Batch and PIR codes and their connections to
locally repairable codes,” in Network Coding and Subspace Designs,
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