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Abstract—In this work, we consider the general problem of dis-
tributed detection in the presence of Byzantines using wireless sen-
sor networks. Instead of attempting to mitigate Byzantine attacks
as a system designer, we investigate the issue from the perspective
of a Byzantine attacker. The probability for each individual sensor
to be compromised (compromising probability) required to blind
the system operation is adopted as the attack measure. Under the
system setting that the fusion center (FC) declares the most likely
hypothesis to be true based on the M -ary data from N local
sensors, a Byzantine attack policy that can blind the FC with the
minimum compromising probability for each individual sensor is
derived under the assumption that the Byzantine attacker knows
the statistics of the local outputs. The closed-form expression for
a blind-achieving Byzantine transition probability that is used to
alter the statistics of the local outputs of compromised sensors is
also established. Our results indicate that the statistics of the local
outputs is essential for the minimization of an attacker’s effort.

Index Terms—Distributed detection, distributed inference
network security, wireless sensor networks, Byzantine attacks.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have been studied
for well over a couple of decades [1]–[5]. For applica-

tions employing WSNs, distributed inference plays an essential
role and hence its design is one of the key problems that has been
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investigated extensively [6]–[10]. In a WSN, simple inexpensive
sensors are deployed to observe a phenomenon of interest (POI)
θ that is drawn from a finite set Θ of size L. Due to limited
resources at each sensor, the observed local data is processed
into anM -ary symbol for transmission to the fusion center (FC).
A quantization is thus required at each sensor to convert the
observed data into one of the M symbols. The sensors send the
resulting M -ary outputs to the FC, where a global inference
regarding the POI is made.

In applications involving inference over WSNs, an important
issue is the robustness of global inference against hostile actions.
A recent research direction regarding this issue has revolved
around how to protect the global inference made by the FC when
a fraction of sensors are compromised [11]–[16]. These compro-
mised sensors are usually called Byzantine sensors, while the
remaining sensors are called Honest sensors.1 In their problem
formulations, some researchers assume that only binary data are
transmitted by the local sensors [18], and others restrict their
focus on binary hypothesis testing [11]–[16]. Some prior works
such as [11] have dealt with non-binary transmissions from the
local sensors but consider only asymptotic blindness of the FC as
the number of sensors grows without bound. In certain scenarios,
coordination among sensors is also introduced [19].

Different from the above mentioned works, we attempt to
approach the issue of inference robustness in a more practical
non-asymptotic scenario, where the number of sensors N is
finite. Furthermore, a general (possibly, non-binary) hypothesis
test regarding a POI is performed. We assume that coordination
among sensors is not feasible, hence sensors make their local
decisions based only on their local observations. Such a general
L-ary hypothesis testing problem formulation over a WSN of
finite size is more applicable to practical scenarios than a system
with only binary decisions or very large (infinite) number of
sensors.

In 2014, an optimal Byzantine attack policy for distributed
inference sensor networks was proposed in [17], where the
attacker does not have any knowledge (or partial knowledge at
best) about the true state of the POI, or quantization thresholds

1Byzantine typically means that the compromised sensors know what the
Honest sensors know as they are part of the inner circle. By following what
has been assumed in [11], [16], [17], Byzantine sensors in this work refer to
those sensors that have a complete knowledge of the statistics of local outputs
(which is exactly the statistics of local outputs of the Honest sensors under
the assumption of independent and identically distributed observations), but the
Byzantine sensors do not know what the Honest sensors have observed.
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of the sensors, or their statistics. In the absence of such infor-
mation, hostile actions at local sensors are restricted only to
the modifications of the M -ary symbols transmitted to the FC.
This surely limits the capability of a Byzantine attacker, who
can only carry out the so-called “man-in-the-middle” attack by
performing data falsification.

In this paper, we significantly extend the work presented
in [17] by assuming that a Byzantine attacker is quite capable
and is either endowed with the knowledge of the statistics of
local outputs or has the capability to learn it. In addition, the
attacker is assumed to be aware of or can have a sufficiently
good estimate of the POI θ, and it knows the true operational
probability for each sensor to be independently compromised
α. As a result, an attacker can devise an M ×M Byzantine
transition probability matrix P (θ,α) with respect to each θ ∈ Θ
and α ∈ [0, 1], according to which the M -ary local data of each
compromised sensor is statistically converted. We then show
analytically that with this additional knowledge, the FC can be
blinded if, and only if, the probability that an individual sensor
is compromised by an attacker is no less than a certain minimum
value α∗

blind.2 The achievability argument involves an effective
statistical Byzantine attack policyP(α) := {P (θ,α)}θ∈Θ that can
blind the FC with α ≥ α∗

blind.
After determining the blind-achieving Byzantine transition

probability policy P(α), practical concerns about the assump-
tions of perfect knowledge onα and θ are addressed below. First,
the actual sensor compromising probability α may be unknown
to an attacker at the time the Byzantine transition probability
P(α) is embedded onto a compromised sensor. It brings up
the question regarding what value of α should be used in this
situation. We answer the question by establishing the expression
for the probability of detection at the FC as a function of αB,
which is the value used in the embedded Byzantine transition
probability matrices P(αB) when the knowledge of the true
sensor compromising probability α is unavailable. We found
that the probability of detection can be expressed as a function
of the ratio α/αB. Further numerical examination indicates
that the probability of detection decreases as the ratio α/αB

increases. This leads to a useful rule of thumb that subject to the
achievability of system blindness (i.e.,αB ≥ α∗

blind), maximizing
the global detection error probability generally conforms to
minimizing αB subject to αB ≥ α∗

blind, and hence an attacker
shall set αB = α∗

blind. This policy not only maximizes the global
detection error probability according to empirical experiments,
but reduces the operational effort of an attacker since no dynamic
adjustment of α-value for P(α) is necessary as long as the true
sensor compromising probability α varies between α∗

blind and 1.
Secondly, the perfect knowledge of POI θ may be too opti-

mistic for an attacker. In practice, a compromised sensor may
perform an initial estimate of the POI, denoted as θB, possibly

2This work adopts a more general definition of system blindness than the
one used in [17] Specifically, blindness in [17] meant that the FC receives equi-
probable outputs from local sensors and hence can only make a blind random
guess regarding the POI. In this work, the notion of blindness is generalized,
which only requires that the local outputs are made independent of the POI. It
is obvious that requiring the FC to receive equiprobable outputs is a sufficient
condition for making the local outputs and the POI independent.

obtained through cooperation among a small number of nearby
compromised sensors. We will show in our numerical experi-
ments in Section IV-B that a rough estimate of the particular
phenomenon θB, applied to the optimal P (θB,αB) we derive in
later sections, is adequate to force the FC to suffer a near-blinding
performance. In particular, this design brings an advantage that
varying P (θB,αB) according to a rough estimate of θ = θB at local
compromised sensors mitigates possible identification of com-
promised sensors by examining their statistics by an anti-attack
scheme.

It should be noted that the results obtained in this paper are
extensions of our previous preliminary study [20], where it
was shown that a Byzantine attacker can statistically modify
the M -ary local data at compromised sensors such that the
receptions at the FC become independent of the POI. How to
minimize the sensor compromising probability α among all
attack policies (i.e., to determineα∗

blind), however, was not solved
in [20]. Also, a Byzantine transition probability P(α) that can
blind the system for a given sensor compromising probability
α ≥ α∗

blind was not derived in [20]. In this paper, both of the above
two unsolved issues have been addressed. Our results indicate
that a proper choice of the target statistics for M -ary local
transmissions can significantly reduce the sensor compromising
probability required to blind the system, as compared to the
one that requires identical statistics for receptions at the FC as
in [20]. We summarize the main contributions of the paper in
the following.
� Determination of the exact expression of the mini-

mum sensor compromising probability α∗
blind as a func-

tion of the statistics of the local quantization outputs
(cf. Theorem 2).

� Identification of a blind-achieving Byzantine transition
policy P(α) := {P (θ,α)}θ∈Θ for all α ≥ α∗

blind (cf. The-
orems 1 and 3).

� Empirical confirmation of the sufficiency of setting the op-
erationalαB = α∗

blind in order to force an error performance
worse than a random guess when embedding P(α) onto a
compromised sensor (cf. Section III-C).

The rest of the paper is organized as follows. The system
model and problem formulation are introduced in Section II.
Determination of the minimum sensor compromising probabil-
ity α∗

blind that makes the POI and the local outputs statistically
independent is presented in Section III. Numerical results are
given in Section IV and conclusion is drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Setup and Assumptions

Consider a WSN that is designed to estimate a particular POI
θ as shown in Fig. 1(a). Assume that θ is randomly drawn
from a finite set Θ with cardinality |Θ| = L, according to
a known probability mass function (pmf). The local sensors
acquire conditionally independent and identically distributed
(i.i.d.) observations r = (r1, r2, . . . , rN ) given θ, where ri is
the local observation of the ith sensor. We consider a model
that each sensor is independently compromised with an identical
probability α by a Byzantine attacker, such scenario is also used
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Fig. 1. Byzantine attacks for distributed detection network.

in [11], [17]. These Byzantine sensors transmit falsified data to
the FC in order to deteriorate the global decision of the WSN,
and the FC is assumed to be unaware of the presence of these
Byzantine attacks.

Due to limited local resources such as energy and bandwidth,
a local decision rule at the ith sensor, i ∈ N := {1, 2, . . . , N},
converts ri to one of the M symbols, denoted as ui ∈ M :=
{1, 2, . . . ,M}, before conveying it to the FC. Since the trans-
mitted symbol may be compromised by a Byzantine attacker and
hence could be different from ui, we denote by vi the symbol
that is actually transmitted by the ith sensor. Accordingly, if
sensor i is an Honest sensor, we have vi = ui; otherwise, the
ith sensor modifies ui = � to vi = m with probability p

(θ)
�,m

as depicted in Fig. 1(b). As a result, the so-called Byzantine
transition probability can be modeled via a row-stochastic matrix
as follows:3

P (θ) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p
(θ)
1,1 p

(θ)
1,2 . . . p

(θ)
1,M

p
(θ)
2,1 p

(θ)
2,2 . . . p

(θ)
2,M

...
...

. . .
...

p
(θ)
M,1 p

(θ)
M,2 . . . p

(θ)
M,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

In our design, each compromised sensor will have an initial
estimate of the POI θB and will use P (θB) to attack the system. To
facilitate the analysis, we make the strong assumption θB = θ in
our derivation of blind-achieving P (θ), i.e., we assume that the
Byzantine attacker knows the exact value of θ. Note that such a
strong assumption has also been made in [11], where the authors
investigated security problems in distributed detection networks
by assuming that the true hypothesis is known to compromised
sensors. Although this assumption is too optimistic to be effec-
tive in reality, it can be regarded as an ideal benchmark to shoot

3Note that the optimal Byzantine transition probability that we derive in later
sections such as the one in Theorem 3 will also be a function of the sensor
compromising probability α. In this section, we use P (θ) simply to denote a
general design that can be arbitrary, not necessarily dependent on α, but is only
a function of the POI θ.

for from attacker’s standpoint. We will examine this assumption
in our numerical experiments in Section IV-B and will show that
a rough estimate of the particular phenomenon θB, together with
the optimal P (θ) we derive in later sections, is adequate to force
the FC to suffer a near-blinding performance.

When deriving the P (θ) that can blind the FC, a Byzantine
attacker is assumed to know the probability mass function (pmf)
of ui, which is denoted as c

(θ)
m :=Pr(ui = m|θ). Without loss

of generality, we assume

min
m∈M

max
θ∈Θ

c(θ)m > 0, (1)

since the attacker can exclude the mth row and the mth column
from P (θ) when maxθ∈Θ c

(θ)
m = 0 and design a P (θ) of smaller

size to blind the FC.
Additionally, we denote the transition probability matrix of

the discrete noisy link between a sensor and the FC by:

Q :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q1,1 q1,2 · · · q1,M

q2,1 q2,2 · · · q2,M

...
...

. . .
...

qM,1 qM,2 · · · qM,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where q�,m is the probability of vi = �being converted to symbol
zi = m during the noisy transmission. It is reasonable to assume
that the noisy link is independent of the phenomenon θ and hence
Q remains invariant when the value of θ varies. From elementary
probability theory, the vector c(θ) := [c

(θ)
1 c

(θ)
2 · · · c

(θ)
M ]T and

the two matrices P (θ) and Q must satisfy

⎧
⎪⎪⎨
⎪⎪⎩

1T c(θ) = 1 with 0 ≤ c
(θ)
m ≤ 1 for m ∈ M;

P (θ)1 = 1 with 0 ≤ p
(θ)
�,m ≤ 1 for �,m ∈ M;

Q1 = 1 with 0 ≤ q�,m ≤ 1 for �,m ∈ M,

where superscript “T” is the matrix transpose operation and 1 is
the M × 1 all-one column vector.
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With the above setting, the conditional probability of receiv-
ing zi from the ith sensor, given that θ is the true phenomenon,
can be obtained as follows:

Pr (zi = m |θ) =
M∑
j=1

qj,m Pr (vi = j |θ)

=
M∑
j=1

qj,m

(
αPr (vi = j |i = Byzantine, θ)

+ (1− α) Pr (vi = j |i = Honest, θ)

)

= α

M∑
j=1

qj,m

M∑
�=1

Pr (vi = j |ui = �, θ) · Pr (ui = � |θ)

+ (1− α)

M∑
j=1

qj,m Pr (ui = j |θ)

= α

(
M∑
j=1

qj,m

M∑
�=1

p
(θ)
�,j c

(θ)
� −

M∑
j=1

qj,mc
(θ)
j

)
+

M∑
j=1

qj,mc
(θ)
j .

(2)

Moreover, since each sensor is independently compromised with
probability α, and the noisy links are assumed independent, we
have

Pr (z = m |θ) =
N∏
i=1

Pr (zi = mi |θ) , (3)

where z = [z1 z2 · · · zN ]T and m = [m1 m2 · · · mN ]T .

B. Problem Formulation

A Byzantine attack is targeted to blind the FC with the least
amount of effort, i.e., with the minimum sensor compromising
probability α, such that the observation Pr(z = m |θ) at the FC
and θ become independent, which can be characterized as:

Pr (z = m |θ) = Pr(z = m). (4)

From (3), we have the following lemma.
Lemma 1: Eq. (4) holds if, and only if, for every 1 ≤ i ≤ N ,

Pr (zi = m |θ) = Pr(zi = m) = bm, ∀m ∈ M, (5)

for some pmf b = [b1 b2 · · · bM ]T . In other words, (4) can be
guaranteed by sensor-wise independence between zi and θ.

Proof: Eq. (5) implying (4) holds straightforwardly from (3).
Conversely, (2) shows that Pr(zi = m |θ) = Pr(z = m |θ) has
nothing to do with the index of the sensor; hence, based on the
validity of (4), we can obtain from (3) that:

Pr(z = m1) =

N∏
i=1

Pr (z = m |θ) = (Pr (z = m |θ))N .

Accordingly, Pr(z = m |θ) is not a function of θ. �
With the objective of making zi and θ independent, together

with (2), the problem that this paper focuses on is to find the

minimum α, subject to

M∑
j=1

qj,mc
(θ)
j − bm = α

(
M∑
j=1

qj,mc
(θ)
j −

M∑
j=1

qj,m

M∑
�=1

p
(θ)
�,j c

(θ)
�

)

for all m ∈ M and all θ ∈ Θ, over all attacker’s choices of
Byzantine transition probabilities P = {P (θ)}θ∈Θ and pmf b.
In matrix form, the above equations can be expressed as:

QT c(θ) − b = αQT
(

I − (P (θ))T
)
c(θ), ∀ θ ∈ Θ, (6)

where I is the M ×M identity matrix.
It can be seen from (6) that two statistical modifications P (θ)

and Q are applied to the quantization outputs of Byzantine
sensors. The former is specifically designed to blind the FC,
while the latter is due to channel noise. The actual impact of
the two is somehow combined, which might complicate the
determination of the minimum sensor compromising probability
α∗

blind among all solutions α for (6). We, however, found that
as long as Q admits an inverse and d = (QT )−1b is a pmf
whenever b is a pmf, which holds in many channels of practical
interest (e.g. modulo-M additive noise channels), the channel
noise no longer impacts the determination of α∗

blind, and (6) can
be equivalently simplified to

c(θ) − d = α
(

I − (P (θ))T
)
c(θ), ∀ θ ∈ Θ (7)

with

Pr (vi = m |θ) = Pr(vi = m) = dm, ∀m ∈ M,

and b = QTd = QT [d1 d2 · · · dM ]T . As a result, every α that
satisfies (6) must fulfill (7). This justifies the analysis in the next
section, which ignores the impact of Q and determines α∗

blind
simply based on (7).

In situations when Q is not invertible,4 the set of all solutions
α for (7) may become a proper subset of the solution set for (6).
In such a case, the introduction of channel noise can help save
the Byzantine effort and further reduce α∗

blind as shown in the
following example.

Example 1: Suppose Q = xwT is a rank-one matrix. Then,
for θ ∈ Θ,

QT c(θ)= wxT c(θ)= w
1T

(wT1)
c(θ)= w

(1T c(θ))

(wT1)
=

w

(wT1)
,

where the second equality follows from 1 = Q1 = x(wT1).
Hence, choosing b = w

(wT 1)
immediately gives that the mini-

mum α that satisfies (6) is zero, even if the minimum α that
fulfills (7) is strictly positive (cf. Theorem 2). �

4An operational implication of the invertibility of Q in our system setting
can be seen from the relation of b = QTd. When Q does not admit an inverse,
the mapping from d to b becomes surjective and so does the mapping from
c(θ) to QT c(θ). Thus, distinct c(θ) for two POIs may result in the same output
statistics after passing through the wireless link; in such a case, the FC can no
longer distinguish the two POIs and hence becomes blind even without Byzantine
attack. This is precisely what has been encountered in Example 1.
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For convenience, we denote by α(d,P) all the solutions of
α satisfying (7) for given d and P. Then, the global minimum
α∗

blind can be approached via the following two minimization
problems:

either min
d∈D

min
P∈P

α(d,P) or min
P∈P

min
d∈D

α(d,P),

where P is the set that is exhaustive over all legitimate P, and
D consists of all M × 1 pmf vectors. We choose the former
approach due to analytical convenience.5 Specifically, given any
target distribution d, the smallest

αblind(d) := min
P∈P

α(d,P)

and its corresponding minimizer P∗(d) are first determined. We
then determine

α∗
blind = min

d∈D
αblind(d)

as well as the minimizersd∗ andP∗ := P∗(d∗) that can achieve
α∗

blind.

C. System Implication of the Attack Measure: Sensor
Compromising Probability

In this subsection, we clarify the system implication of two
analogous but distinct attack measures, i.e., the minimum com-
promising probability for an individual sensor and the minimum
ratio of compromised sensors to all the sensors.

Similar to [17], each sensor being independently compro-
mised with an identical probability α (referred to as α-setting in
the sequel) is considered in our mathematical formulation. This
is in contrast to the notion of compromising exactly β fraction
of sensors (referred to as β-setting in the sequel). Although the
two settings may be indistinguishable as the number of sensors
goes to infinity, the difference between them is not negligible
when the size of the sensor network is finite. As in [17], here we
employ the α-setting rather than the β-setting.

As a result of the adoption of the α-setting, the mathematical
problem to be solved has a single-sensor formulation. Specif-
ically, under the assumption that each sensor is independently
compromised with an identical probability α, a Byzantine tran-
sition probability P(α) that statistically alters the local out-
puts of compromised sensors can be devised by an attacker.
The minimum sensor compromising probability α∗

blind required
by an attacker to blind the FC, as well as the corresponding
blind-achieving Byzantine transition probability P(α∗

blind), are
accordingly obtained.

5It can be noted from Theorem 1 that αblind(d) always exists for any given
d. However, the solution set for αblind(P) := mind∈D α(d,P) can be empty
for an improperly chosen P. For example, if P (θ) = R for all θ ∈ Θ and c(θ)

distinct for different θ, then (7) requires

c(θ) =
(
(1− α)I + αRT

)−1
d ∀ θ ∈ Θ

which cannot be equated when (1− α)I + αRT admits an inverse
for every α ∈ [0, 1]. Thus, to approach α∗

blind via the minimization
minP∈P mind∈D α(d,P) needs to specify those P such that αblind(P) exists,
which may be a challenging task.

Our simulation results confirm that when we set α = β, the
resulting average global detection error probabilities of the two
settings for a system with only ten sensors are actually close to
each other (cf. Figs. 3 and 4). This indicates that the parameters
that respectively govern the two settings (i.e., α and β) not only
have the same asymptotical impact on their respective global
detection error probabilities but exhibit little difference for a
system of finite size.

III. A BLIND-ACHIEVING BYZANTINE ATTACK

In this section, αblind(d) = minP∈P α(d,P) will be estab-
lished in Subsection III-A. What follows is the derivation of
α∗

blind = mind∈D αblind(d) in Subsection III-B. Finally, an at-
tack policy that targets the maximization of the probability of
misdetection will be given in Subsection III-C.

A. Minimum Sensor Compromising Probability for Given
Local Output Statistics

Before presenting the derivation of αblind(d), some prelimi-
nary analysis is necessary. For a given pmf d, we have that

M∑
m=1

(
c(θ)m − dm

)
=

M∑
m=1

c(θ)m −
M∑

m=1

dm = 1− 1 = 0

for every θ ∈ Θ. As a result, maxm∈M{c(θ)m − dm} ≥ 0, ∀ θ ∈
Θ. Corresponding to each θ ∈ Θ, we divide the index set
M = {1, 2, . . . ,M} into two groups. The first group M(θ)

1

contains those indices m that satisfy max{c(θ)m − dm, 0} = 0

(equivalently, c(θ)m ≤ dm), while the remaining indices belong
to the second group M(θ)

2 .

It can be verified that maxm∈M{c(θ)m − dm} > 0 implies 1 ≤
|M(θ)

1 | < M , ensuring that none of the two groups are empty.6

If maxm∈M{c(θ)m − dm} = 0, we have M(θ)
1 = M and hence

M(θ)
2 is empty.

In the case that M(θ)
2 �= ∅, we define

e(θ)m := 1− dm

c
(θ)
m

, m ∈ M(θ)
2 . (8)

Note that for those m’s in a non-empty M(θ)
2 , max{c(θ)m −

dm, 0} > 0 implies the denominator c
(θ)
m > 0 and 0 ≤ dm <

c
(θ)
m , and hence e

(θ)
m is well defined and positive.

Theorem 1: If a Byzantine attacker learns the conditional
pmf of the local output c(θ) for every θ ∈ Θ, then for given
d ∈ D,

αblind(d) = max
θ∈Θ

max
m∈M:c

(θ)
m >0

{
1− dm

c
(θ)
m

}
. (9)

6M(θ)
1 = M implies c

(θ)
m ≤ dm for all m ∈ M; and hence, maxm∈M

{c(θ)m − dm} = 0. By this, we can equivalently infer that maxm∈M{c(θ)m −
dm} > 0 implies |M(θ)

1 | < M .
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Furthermore, (9) can be achieved by P∗ = {P (θ)∗}θ∈Θ with its
elements defined as follows:

p
(θ)∗
�,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, j = � ∈ M(θ)
1 ;

1− e
(θ)
�

αblind(d)
, j = � ∈ M(θ)

2 ;

(dj − c
(θ)
j )∑

m∈M(θ)
1

(dm − c(θ)m )

(
e
(θ)
�

αblind(d)

)
,

j ∈ M(θ)
1 & � ∈ M(θ)

2 ;

0, otherwise,
(10)

when M(θ)
2 is non-empty, and

P (θ)∗ = I

when M(θ)
2 is empty.

Proof: We defer the proof to Appendix A for better
readability. �

Note that when M(θ)
2 is non-empty, we have∑

m∈M(θ)
1
(dm − c

(θ)
m ) =

∑
m∈M(θ)

2
(c

(θ)
m − dm) > 0 and the

denominator αblind(d) ≥ e
(θ)
k(θ) > 0, where

k(θ) := arg max
m∈M(θ)

2

e(θ)m . (11)

Hence, the P (θ)∗ in (10) is well defined.
Two remarks are made based on the above theorem. First, the

pmf d in (7) can be regarded as the target distribution that a
Byzantine attacker intends to maliciously change c(θ) to. Thus,
for those m’s in M(θ)

1 , the value of c(θ)m should be increased,

while c
(θ)
m must be scaled down for m ∈ M(θ)

2 .
Second, the minimizer P (θ)∗ is not unique. We can relax the

assignment of p(θ)∗�,j in (10) for j ∈ M(θ)
1 and � ∈ M(θ)

2 to any
values satisfying

∑

�∈M(θ)
2

p
(θ)∗
�,j c

(θ)
� =

dj − c
(θ)
j

αblind(d)
for j ∈ M(θ)

1 (12)

and

∑

j∈M(θ)
1

p
(θ)∗
�,j =

e
(θ)
�

αblind(d)
for � ∈ M(θ)

2 . (13)

This gives extra freedom to an attacker in the choice of the
blind-achieving Byzantine transition probability.

A design of the blind-achieving Byzantine transition proba-
bility P∗ is illustrated in the following example.

Example 2: Consider Θ = {θ1, θ2, θ3}, and assume that the
local data is quantized into 4-ary symbols. Let the statistics of
local quantization outputs given each hypothesis be given by
c(θ1) =

[
1
10 ,

1
5 ,

3
10 ,

2
5

]T
, c(θ2) =

[
3
5 ,

1
5 ,

1
10 ,

1
10

]T
, and c(θ3) =[

1
10 ,

1
5 ,

1
5 ,

1
2

]T
.

Then, setting the target distribution d to be the uniform
distribution, i.e.,

d = duni :=
1

M
1 =

[
1

4
,
1

4
,
1

4
,
1

4

]T
with M = 4,

we obtain M(θ1)
1 = {1, 2}, M(θ1)

2 = {3, 4}, e(θ1) = [−,−,
1
6 ,

3
8 ]

T ; M(θ2)
1 = {2, 3, 4}, M(θ2)

2 = {1}, e(θ2) = [ 7
12 ,−,−,

−]T ; and M(θ3)
1 = {1, 2, 3}, M(θ3)

2 = {4}, e(θ3) =
[−,−,−, 1

2 ]
T . Theorem 1 implies that

αblind(duni) = max
θ∈Θ

max
m∈M:c

(θ)
m >0

{
1− dm

c
(θ)
m

}

= max
θ∈Θ

max
m∈M(θ)

2

e(θ)m =
7

12
.

A set of minimizers that achieve αblind(duni), according to
Theorem 1, is respectively given by

P (θ1)∗ =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

3
14

1
14

5
7 0

27
56

9
56 0 5

14

⎤
⎥⎥⎥⎥⎥⎦
,

P (θ2)∗ =

⎡
⎢⎢⎢⎢⎢⎣

0 1
7

3
7

3
7

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦
, and P (θ3)∗=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

18
35

6
35

6
35

1
7

⎤
⎥⎥⎥⎥⎥⎦
.

(14)

As we have remarked previously, the minimizers that achieve
αblind(duni) are not unique. For example, (12) and (13) jointly
imply that (14) can be substituted by

P (θ1)∗ =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

1
7

1
7

5
7 0

15
28

3
28 0 5

14

⎤
⎥⎥⎥⎥⎥⎦
. (15)

Since both (14) and (15) satisfy (7) with identical α, it can be
inferred similarly from the later analysis in (19) and (20) in
Subsection III-C that both result in the same global detection
error probability, and therefore, an attacker can simply select
one of the two to embed onto those compromised sensors. �

B. Minimum Sensor Compromising Probability for
System Blindness

In this subsection, we determine the minimizer d∗ ∈ D that
achieves α∗

blind.
Theorem 2: If the Byzantine attacker has the knowledge of

the conditional pmf of the local output c(θ) for all θ ∈ Θ, then

α∗
blind = 1− 1∑M

m=1 maxθ∈Θ c
(θ)
m

. (16)
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Furthermore, (16) can be achieved by d∗ with its components
defined as:

d∗m:=
maxθ∈Θ c

(θ)
m∑M

�=1 maxθ∈Θ c
(θ)
�

for m ∈ M.

Proof: See Appendix B. �
The exact expression of α∗

blind in Theorem 2 indicates that

the minimum Byzantine effort grows as
∑M

m=1 maxθ∈Θ c
(θ)
m

increases. It can be derived that under equal prior probability
on θ ∈ Θ,

M∑
m=1

max
θ∈Θ

c(θ)m =

M∑
m=1

max
θ∈Θ

Pr(ui = m|θ)

=

M∑
m=1

Pr(ui = m)

Pr(θ)
max
θ∈Θ

Pr(ui = m|θ)

=

M∑
m=1

L · Pr(ui = m)max
θ∈Θ

Pr(θ|ui = m)

= L · Pc-single ,

and

Pc-single :=

M∑
m=1

Pr(ui = m)max
θ∈Θ

Pr(θ|ui = m)

is the probability of correct detection of θ based on one single ob-
servation ui. This leads to α∗

blind = 1− 1
L·Pc-single

. Consequently,
if the local outputui knows more about θ (in the sense of a higher
Pc-single), the attacker requires more effort to blind the system.
On the other hand, if the cardinality of the POI (i.e., L) is larger,
a higher Byzantine effort for system blindness is required. In
addition, it is interesting to note that the minimizer d∗m can be
shown to be proportional to maxθ∈Θ c

(θ)
� , i.e.,

d∗m
maxθ∈Θ c

(θ)
m

= 1− α∗
blind =

1

L · Pc-single

for every m ∈ M.
From Theorem 2, we can also obtain that the minimum

blind-achieving sensor compromising probability α∗
blind always

satisfies

0 ≤ α∗
blind ≤ 1− 1

M
. (17)

Note that 1− 1
M is the minimum blind-achieving sensor com-

promising probability obtained in [17, Thm. 1]. Our result,
however, shows that α∗

blind is always no larger than 1− 1
M . This

is an anticipated result since extra knowledge of the statistics of
local decisions should help reduce the Byzantine effort. In fact,
we can refine the upper bound in (17) down to

0 ≤ α∗
blind ≤ 1− 1

min{M,L}
by noting that

M∑
m=1

max
θ∈Θ

c(θ)m =
∑
θ∈Θ

∑
m∈A(θ)

c(θ)m ≤
∑
θ∈Θ

1 = L,

where {A(θ)}θ∈Θ are disjoint partitions of M such that c(θ)m =

maxθ′∈Θ c
(θ′)
m for m ∈ A(θ).

In the special case of binary hypothesis testing, where Θ =
{θ1, θ2}, the determination of the minimum Byzantine effort
that can blind the FC is equivalent to finding the smallest
blinding power such that the resultant Kullback-Leibler diver-
gence between the two conditional pmfs Pr(vi = m |θ = θ1)
and Pr(vi = m |θ = θ2) is zero as considered in [11]. In such a
case, the α∗

blind that we establish in Theorem 2 can be written as

α∗
blind = 1− 1∑

m∈M(θ1) c
(θ1)
m +

∑
m∈M(θ2) c

(θ2)
m

= 1− 1

1 +
∑

m∈M(θ1)

[
c
(θ1)
m − c

(θ2)
m

]

=

∑
m∈M(θ1)

[
c
(θ1)
m − c

(θ2)
m

]

1 +
∑

m∈M(θ1)

[
c
(θ1)
m − c

(θ2)
m

] ,

which points to the same result as in [11, Thm. 1].
We next continue Example 2 for the illustration of d∗.
Example 3: It is obvious that the setting in Example 2 gives

[maxθ∈Θ c
(θ)
1 , maxθ∈Θ c

(θ)
2 , maxθ∈Θ c

(θ)
3 , maxθ∈Θ c

(θ)
4 ]T =

[ 35 ,
1
5 ,

3
10 ,

1
2 ]

T and

d∗ =

⎡
⎢⎢⎢⎢⎢⎣

( 35 )/(
3
5 + 1

5 + 3
10 + 1

2 )

( 15 )/(
3
5 + 1

5 + 3
10 + 1

2 )

( 3
10 )/(

3
5 + 1

5 + 3
10 + 1

2 )

( 12 )/(
3
5 + 1

5 + 3
10 + 1

2 )

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

3
8

1
8

3
16

5
16

⎤
⎥⎥⎥⎥⎥⎦
.

Hence, we have

α∗
blind = αblind(d

∗)

= max
θ∈Θ

max
m∈M:c

(θ)
m >0

{
1− d∗m

c
(θ)
m

}
= 1−

3
8
3
5

=
3

8
.

In comparison with αblind(duni) =
7
12 , we conclude (conve-

niently in terms of the β-setting perspective with β = α) that
an attacker needs to compromise only 9 out of 24 sensors on
average for system blindness, instead of 14 out of 24, if a better
d = d∗ rather than d = duni is employed. �

C. Byzantine Transition Probability and Its Resulting Global
Detection Error Probability

In the previous two subsections, the minimum Byzantine
effort α∗

blind required for system blindness was determined. It
implied that it is impossible to blind the system if 0 ≤ α <
α∗

blind. Furthermore, when α = α∗
blind, a blind-achieving Byzan-

tine transition probability P∗ = {P (θ)∗}θ∈Θ was given in Theo-
rem 1. However, it should be pointed out that theP∗ in Theorem 1
cannot make the local quantization output vi and θ statistically
independent for α > α∗

blind. An extension of P∗ that can blind
the system for a givenα > α∗

blind is provided in the next theorem.
Theorem 3: For a fixed target distribution of local outputs d

and also for an α satisfying αblind(d) ≤ α ≤ 1, the pair of attack
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parameters (α,P(α)) = (α, {P (θ,α)}θ∈Θ) satisfy (7), where the
elements of M ×M matrix P (θ,α) are given by

p
(θ,α)
�,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, j = � ∈ M(θ)
1 ;

1− e
(θ)
�

α
, j = � ∈ M(θ)

2 ;

(dj − c
(θ)
j )∑

m∈M(θ)
1

(dm − c(θ)m )

(
e
(θ)
�

α

)
,

j ∈ M(θ)
1 & � ∈ M(θ)

2 ;
0, otherwise,

(18)

when M(θ)
2 is non-empty, and P (θ,α) = I when M(θ)

2 is empty.
Proof: By taking (α,P(α)) into (7), the theorem can be

proved via a similar procedure as in Step 2 of the proof of
Theorem 1. �

The above theorem shows that the attacker shall adjust the
Byzantine transition probability matrix P(α) (from ui to vi)
according to the true sensor compromising probability α and
manipulate it to lie within the range αblind(d) < α ≤ 1. In
particular, from the β-setting equivalence, the true sensor com-
promising probability should match the ratio of the number
of compromised sensors and the total number of sensors. This
adjustment, however, might not be a feasible attack option for
certain scenarios such as when the true sensor compromising
probability varies in time or is even unknown. In these situations,
the designed sensor compromising probability, denoted as αB,
could be different from the true sensor compromising probabil-
ity α. As a result, how to select the designed parameter αB at
the time a Byzantine transition probability P(αB) is embedded
onto a compromised sensor becomes an essential concern from
attackers’ standpoint. With the new objective in mind, we derive
below the probability of successful detection at the FC due to
managed Byzantine transition probability P(αB) and true sensor
compromising probability α for a target distribution of local
outputs d.

For notational convenience, denote the corresponding
Pr(vi = m |θ) and Pr(zi = m |θ) as a

(θ,αB,α)
m and o

(θ,αB,α)
m ,

respectively. Define

a(θ,αB,α) :=
[
a
(θ,αB,α)
1 a

(θ,αB,α)
2 · · · a(θ,αB,α)

M

]T

and

o(θ,αB,α) :=
[
o
(θ,αB,α)
1 o

(θ,αB,α)
2 · · · o(θ,αB,α)

M

]T
.

Then, we obtain from Theorem 3 that the Byzantine transition
probability P(αB) satisfies αB

(
I − (P (θ,αB))T

)
c(θ) = c(θ) −

d, ∀ θ ∈ Θ, which implies that for all θ ∈ Θ,

a(θ,αB,α) = [(1− α)I + α(P (θ,αB))T ]c(θ)

= c(θ) − α(I − (P (θ,αB))T )c(θ)

=

(
1− α

αB

)
c(θ) +

α

αB
d

= c(θ) +
α

αB
(d− c(θ)), (19)

and

o(θ,αB,α) = QTa(θ,αB,α)

=

(
1− α

αB

)
QT c(θ) +

α

αB
QTd

= QT

[
c(θ) +

α

αB

(
d− c(θ)

)]
. (20)

Unaware of the Byzantine attack, the FC makes its global
decision according to o(θ,αB,0) = QT c(θ) (i.e., α = 0). Hence,
under equal prior probability on the POI, the global decision rule
at the FC can be written as

θ̂(z) = argmax
θ∈Θ

N∏
i=1

o(θ,αB,0)
zi

= argmax
θ∈Θ

N∏
i=1

M∑
�=1

q�,zic
(θ)
� .

The probability of detection at the FC when θ is uniformly
distributed is thus given by

Pc =
1

L

∑
θ∈Θ

∑
z∈O(θ)

N∏
i=1

o(θ,αB,α)
zi

(21)

=
1

L

∑
θ∈Θ

∑
z∈O(θ)

N∏
i=1

(
M∑
�=1

q�,zi

[
c
(θ)
� +

α

αB

(
d� − c

(θ)
�

)])
,

(22)

where {O(θ)}θ∈Θ are disjoint partitions on MN = M× · · · ×
M such that

z∈O(θ)⇒
N∏
i=1

(
M∑
�=1

q�,zic
(θ)
�

)
≥ max

θ′∈Θ

N∏
i=1

(
M∑
�=1

q�,zic
(θ′)
�

)
.

(23)

The above expression shows that the probability of detection
Pc = Pc(α/αB) depends only on the ratio of α/αB for a given
pmf d. As expected, when αB = α, the expression is reduced to
a random guess since

Pc(1) =
1

L

∑
θ∈Θ

∑
z∈O(θ)

N∏
i=1

(
M∑
�=1

q�,zid�

)

=
1

L

∑
z∈MN

N∏
i=1

(
M∑
�=1

q�,zid�

)
=

1

L
, (24)

where (24) holds because 1T
(
QTd

)
= (Q1)T d = 1Td = 1.

Our numerical experiments under d = d∗ indicate that the
larger the ratio is, the larger the global detection error probability
is. Thus, without sacrificing the possibility of blinding the FC, a
capable attacker would lower αB whenever possible. This justi-
fies the choice of fixingαB = α∗

blind, which is the minimum value
attainable for P(αB) that can either blind the FC (if α = α∗

blind),
or force an error performance worse than a random guess (if
α∗

blind < α ≤ 1).

Authorized licensed use limited to: Hsuan Yin Lin. Downloaded on May 01,2020 at 07:57:17 UTC from IEEE Xplore.  Restrictions apply. 



LIN et al.: MINIMUM BYZANTINE EFFORT FOR BLINDING DISTRIBUTED DETECTION IN WIRELESS SENSOR NETWORKS 655

Fig. 2. Global detection error probability Pe(λ) as a function of λ := α/αB
under d = d∗ and Q = I. The pentagram marks the point that Pe(λ) = 1−
1
3 = 2

3 .

Example 4: We continue Example 3 with N = 2. Assume
noiseless wireless links between the sensors and the FC, i.e.,
Q = I. Unaware of a Byzantine attack, the FC will partition
M2 = M×M into

O(θ1) =

{[
2

3

]
,

[
3

2

]
,

[
3

3

]
,

[
3

4

]
,

[
4

3

]}
,

O(θ2) =

{[
1

1

]
,

[
1

2

]
,

[
1

3

]
,

[
1

4

]
,

[
2

1

]
,

[
3

1

]
,

[
4

1

]}
,

O(θ3) =

{[
2

2

]
,

[
2

4

]
,

[
4

2

]
,

[
4

4

]}
.

Setting d = d∗ andαB = α∗
blind = 3

8 from Example 3, we obtain
that for 0 ≤ λ := α/αB ≤ 8

3 ,

Pc(λ) =
1

3

∑
θ∈Θ

∑
z∈O(θ)

2∏
i=1

[
c(θ)zi

+ λ · (d∗zi − c(θ)zi
)
]

=
1

3

∑
θ∈Θ

∑
z∈O(θ)

[
c(θ)z1

c(θ)z2
+ λ2 · (d∗z1 − c(θ)z1

)(d∗z2 − c(θ)z2
)

+ λ · (d∗z1 − c(θ)z1
)c(θ)z2

+ λ · (d∗z2 − c(θ)z2
)c(θ)z1

]
.

We then observe from Fig. 2 that Pe(λ) = 1− Pc(λ) is equal to
2
3 when λ = 1, exceeds 2

3 as λ grows beyond 1, and reaches 1
when λ = 1/α∗

blind = 8
3 . �

IV. NUMERICAL RESULTS

In this section, two scenarios will be investigated. Specifi-
cally, Subsection IV-A examines the Byzantine attack policy
proposed in Subsection III-C, and verifies the closeness between
the average global detection error probabilities of the α-setting
and the β-setting. Subsection IV-B examines how an imperfect
Byzantine estimate regarding the POI affects the attack
performance.

A. Optimal Sensor Compromising Probability Based on
Perfect Estimate of the POI

We now examine the performance deterioration of global
detection due to the proposed Byzantine attack policy in
Subsection III-C with αB = α∗

blind, subject to a perfect knowl-
edge of the POI.

The system model in [17] is employed and summarized as
follows. Let the local observation of the ith sensor be modeled by
ri = θ + si, i ∈ N , where θ ∈ Θ = {−μ, μ} is an antipodally
modulated signal to be estimated, and {si}Ni=1 is an independent
sequence of random variables having the same Gaussian distri-
bution with mean zero and variance σ2

sen. The conditional pmf
of ui given θ follows the simple threshold quantizer as ui = m
if ηm−1 < ri ≤ ηm with

ηm :=

⎧
⎪⎨
⎪⎩

−∞, m = 0;

AM · (2m−M), 1 ≤ m < M ;

∞, m = M,

where AM := A
(M−3)·1{M>2}+1 , and A is an overloading pa-

rameter [21]. As a result, for m ∈ M,

c(θ)m = Pr (ui = m |θ)
= Pr (ηm−1 < θ + si ≤ ηm)

= Pr (ηm−1 − θ < si ≤ ηm − θ)

= Φ

(
ηm − θ

σsen

)
− Φ

(
ηm−1 − θ

σsen

)
, (25)

where Φ is the standard normal cumulative distribution function
(cdf).

The transition probability matrix Q of the discrete noisy link
between the sensors and the FC is given by q�,m = Pr(zi =
m|vi = �) = Pr(ηm−1 < yi ≤ ηm|vi = �), where

yi = AM · (2vi −M − 1) + ni for vi = 1, 2, . . . ,M, (26)

and {ni}Ni=1 is an independent sequence of random variables
with each ni being Gaussian distributed with mean zero and
variance σ2. Note that the factor AM is multiplied onto (2vi −
M − 1) in (26) so that we can conveniently re-use thresholds
ηm−1 and ηm to define q�,m. As an example of the transition
probability of zi given vi under M = 4 and A = 2, we have

Q =

⎡
⎢⎢⎢⎢⎢⎣

1− ε1 ε1 − ε3 ε3 − ε5 ε5

ε1 1− 2ε1 ε1 − ε3 ε3

ε3 ε1 − ε3 1− 2ε1 ε1

ε5 ε3 − ε5 ε1 − ε3 1− ε1

⎤
⎥⎥⎥⎥⎥⎦
, (27)

where εk := Φ(−k/σ) for k ∈ {1, 2, . . .}.
Under the above setting, we first examine the situation, where

an attacker attempts to blind the FC by targeting a local output
pmf d� := (QT )−1buni with buni =

1
M 1 being a uniform distri-

bution as in [17]. The Byzantine attacker thus devises the Byzan-
tine probability matrix P(αB) according to (18), parameterized
with αB = αblind(d

�). We then illustrate the global detection
error probability Pe derived in (22) under N = 10, μ = 1,
σ2

sen = 1, σ2 = 4 and A = 2 as a function of the true sensor
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Fig. 3. Global detection error probability Pe as a function of α under d = d�
and αB = αblind(d

�), where d� := (QT )−1buni with buni =
1
M 1. The setting

of this simulation is thatN = 10,μ = 1,σ2
sen = 1,σ2 = 4 andA = 2. The two

pentagrams mark the values of αblind(d
�) for M = 2 (i.e., 1 bit) and M = 4

(i.e., 2 bits). As a reference, square points mark the resulting global detection
error probability for the β-setting.

compromising probability α in Fig. 3. For comparison, we also
plot the global detection error probability under the β-setting
with β = K/N , where the first K sensors are compromised.

Three observations are made. First, it can be observed from
Fig. 3 that the global detection error probabilities of theα-setting
and the β-setting do not coincide with each other when the size
of the sensor network is finite. However, their difference is quite
small, confirming that the performance of a β-setting system
can be approximated by that of an α-setting system. Second,
αblind(d

�) increases from 0.4057 to 0.5508 asM grows from 2 to
4. Thus, a higher quantization resolution increases the blinding
effort of a Byzantine attacker if uniform buni is the one to be
achieved (as concluded in [17]). Third, further increase in M
such as M = 8 will lead to a d� = (QT )−1buni that contains
negative components and hence is no longer a legitimate pmf.
Note that the authors of [17] consider only the doubly stochastic
noisy wireless links that satisfy both Q1 = 1 and QT 1 = 1,
which is clearly violated by (27).7

Next, we replace d = (QT )−1buni by d = d∗ in Theorem 2
and summarize the results in Fig. 4. For simplicity, the global
detection error probabilities for the β-setting are given only for
M = 16. We observe from Fig. 4 that by taking d = d∗, all
four curves equal 1/2 atα = α∗

blind = 1− 1
2Φ(1) ≈ 0.4057. This

observation can be analytically verified as follows. From the fact

7One may notice an anti-intuitive result in Fig. 3 that increasing the resolution
from 1 bit to 2 bits actually degrades the global detection error probability at
α = 0. Note that as the partitions in (23) are optimal without Byzantine attack,
the global detection error at α = 0 is optimal. This anti-intuitive result is indeed
due to the fact that the channel transition probability under M = 4 as given

in (27) is not a refinement of Q =
[ 1− ε2 ε2

ε2 1− ε2

]
under M = 2. When

replacing Q by an identity matrix, a larger M shall give a lower global detection
error at α = 0 as anticipated. When α > 0, the partitions in (23) are no longer
optimal with respect to α; thus, there is no guarantee that a higher resolution
renders a smaller global detection error probability even if identity Q is used.

that ηm = −ηM−m for 0 ≤ m ≤ M , it can be derived from (25)
that for 1 ≤ m ≤ M ,

c(μ)m = Φ

(
ηm − μ

σsen

)
− Φ

(
ηm−1 − μ

σsen

)

= Φ

(−ηm−1 + μ

σsen

)
− Φ

(−ηm + μ

σsen

)

= Φ

(
ηM−m+1 + μ

σsen

)
− Φ

(
ηM−m + μ

σsen

)

= c
(−μ)
M−m+1

and for 1 ≤ m ≤ M/2 with M even,

c(−μ)
m = Φ

(
ηm + μ

σsen

)
− Φ

(
ηm−1 + μ

σsen

)

> Φ

(−ηm−1 + μ

σsen

)
− Φ

(−ηm + μ

σsen

)

= c
(−μ)
M−m+1.

We thus have

M∑
m=1

max
θ∈Θ

c(θ)m =

M∑
m=1

max
{
c(−μ)
m , c(μ)m

}

=

M∑
m=1

max
{
c(−μ)
m , c

(−μ)
M−m+1

}

= 2

M/2∑
m=1

max
{
c(−μ)
m , c

(−μ)
M−m+1

}

= 2

M/2∑
m=1

c(−μ)
m

= 2 · Pr [si < μ] = 2 · Φ(
√
γsen) , (28)

where γsen := μ2/σ2
sen is the sensing signal-to-noise ratio.

Hence,α∗
blind = 1− 1

2·Φ(
√
γsen)

, which is independent ofM . This
result indicates that a higher quantization resolution does not
necessarily increase the blinding effort of a Byzantine attacker
if an elaborate design of d = d∗ is adopted.

Note that the constant α∗
blind resulting from the binary state

space {−μ, μ} is actually a special case, and α∗
blind in general

grows slightly as the local quantization resolution M increases.
An example is given in Table I, where the state space of Θ =
{−3μ,−μ, μ, 3μ} results in a mildly growingα∗

blind with respect
to increasing local quantization resolution from 3 to 5. In spite
of a larger α∗

blind as obtained in Table I, in comparison with
the binary state space, the table shows that blinding the system
is always possible, i.e., an α∗

blind ≤ 1 can always be obtained.
However, if a Byzantine attacker targets for uniform buni, system
blindness becomes unattainable when log2(M) ≥ 3.

We next examine how the sensing signal-to-noise ratio γsen

and the overloading parameter A affect the minimum blinding
effort α∗

blind. Under Θ = {−3μ,−μ, μ, 3μ}, we derive similar
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Fig. 4. Global detection error probability Pe as a function of α under d = d∗ and αB = α∗
blind. The setting of this simulation is that N = 10, μ = 1, σ2

sen = 1,
σ2 = 4 and A = 2. For all local quantization resolutions of M = 2, 4, 8 and 16, we obtain α∗

blind = 1− 1
2Φ(1)

≈ 0.4057, which is marked by a red hexagram.
As a reference, diamond points mark the resulting detection error probability for the β-setting with M = 16.

TABLE I
MINIMUM BLINDING EFFORT α∗

blind FOR Θ = {−3μ,−μ, μ, 3μ}. THE

SYSTEM SETTING IS THE SAME AS IN FIG. 4 EXCEPT A = 4

to (28) that

M∑
m=1

max
θ∈Θ

c(θ)m =

M∑
m=1

max
{
c(−3μ)
m , c(−μ)

m , c(μ)m , c(3μ)m

}

=
M∑

m=1

max
{
c(−3μ)
m , c(−μ)

m , c
(−μ)
M−m+1, c

(−3μ)
M−m+1

}

= 2

M/2∑
m=1

max
{
c(−3μ)
m , c(−μ)

m , c
(−μ)
M−m+1, c

(−3μ)
M−m+1

}

= 2

M/2∑
m=1

max
{
c(−3μ)
m , c(−μ)

m

}

= 2c
(−3μ)
1 + 2

M/2∑
m=2

max
{
c(−3μ)
m , c(−μ)

m

}
.

For M = 4, we obtain

4∑
m=1

max
θ∈Θ

c(θ)m = 2 · c(−3μ)
1 + 2 ·max

{
c
(−3μ)
2 , c

(−μ)
2

}

= 2 ·max

{
Φ

(−A+ 3μ

σsen

)
+Φ

(
μ

σsen

)

− Φ

(−A+ μ

σsen

)
,Φ

(
3μ

σsen

)}

=

⎧
⎨
⎩
2 ·

[
Φ
(

−A+3μ
σsen

)
+Φ

(
μ
σsen

)
− Φ

(
−A+μ
σsen

)]
, A < 4μ;

2 · Φ
(

3μ
σsen

)
, A ≥ 4μ.

(29)

With α∗
blind = 1− 1/

∑4
m=1 maxθ∈Θ c

(θ)
m , we note as antici-

pated that a higher sensing signal-to-noise ratio γsen = μ2/σ2
sen

requires a higher Byzantine effort for system blindness. How-
ever, under A ≥ 4μ, α∗

blind can only approach 1/2 as γsen grows
large, which is contrary to what has been shown in Table I,
in which α∗

blind tends to reach 1− 1
min{L,M} = 3

4 by increasing

M . It can be further derived from (29) that
∑4

m=1 maxθ∈Θ c
(θ)
m

is maximized by taking A = 2μ, which leads to α∗
blind = 1−

1
2[3Φ(γsen)−1] → 3

4 as γsen goes to infinity. As a result, an attacker
would prefer a system with a larger A and a lower quantization
resolution.

B. Near-Optimal Sensor Compromising Probability Based on
Imprecisely Estimated POI

We now examine the impact of an imprecisely estimated POI
on the attack performance.

If a group of NB compromised sensors can exchange local
quantization outputs {ui}NB

i=1 through, e.g., a separate secret
channel and jointly make an estimate of the POI, then the
detection probability of error is equal to

Pe, Byzantine = 1− 1

L

∑
u∈MNB

max
θ∈Θ

NB∏
i=1

c(θ)ui
. (30)

We list Pe, Byzantine in Table II under the same setting as in
Fig. 4 for NB less than ten, and notice that the Byzantine
detection error probability Pe, Byzantine can be made below 0.05
through cooperation among just four compromised sensors when
M ≥ 4. The same Byzantine detection error probability level
can be reached for M ≥ 2 when only five compromised sensors
form a cooperative group. Notably, Pe, Byzantine is independent of
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TABLE II
BYZANTINE DETECTION ERROR PROBABILITY Pe, Byzantine AS A FUNCTION OF

THE NUMBER OF COOPERATIVE COMPROMISED SENSORS NB AND THE LOCAL

QUANTIZATION RESOLUTION M

the number of sensors N but only a function of the number of
cooperative compromised sensors NB (see the exact expression
in (30)); hence, when N is further increased, the attacker can
attain the same level of Pe, Byzantine with a smaller fraction of
cooperative compromised sensors to all the sensors.

In order to evaluate how the accuracy of Byzantine estimate
affects the attack performance, we substitute (30) by a simple
model as follows:

Pr
(
θ̂Byzantine = θ′ |θ

)
=

{
1− (L− 1)δ, θ′ = θ;

δ, θ′ �= θ,

where δ > 0 is regarded as a rough approximation of the prob-
ability that the compromised sensors guess wrongly on the true
POI θ.

We then re-derive (19) by incorporating the above POI esti-
mation model as:

a(θ,αB,α) =

[
(1− α)I + α (1− (L− 1)δ)

(
P (θ,αB)

)T

+
∑

θ′∈Θ,θ′ �=θ

αδ
(

P (θ,′αB)
)T

]
c(θ)

= c(θ) − α (1− (L− 1)δ)

[
I −

(
P (θ,αB)

)T
]
c(θ)

−
∑

θ′∈Θ,θ′ �=θ

αδ

[
I −

(
P (θ,′αB)

)T
]
c(θ)

= c(θ) − α (1− (L− 1)δ)

(
c(θ) − d

)
αB

−
∑

θ′∈Θ,θ′ �=θ

αδ

(
c(θ

′) − d
)

αB

=

[
1− (1− (L− 1)δ)

α

αB

]
c(θ)

−
∑

θ′∈Θ,θ′ �=θ

δ
α

αB
c(θ

′) +
α

αB
d,

TABLE III
GLOBAL DETECTION ERROR PROBABILITY Pe AS A FUNCTION OF THE

BYZANTINE ESTIMATE ERROR δ ON THE PHENOMENON θ UNDER

αB = α∗
blind ≈ 0.4057 FOR TWO DIFFERENT SENSOR COMPROMISING

PROBABILITIES α = α∗
blind AND α = 0.5

and the conditional distribution of zi given θ is

o(θ,αB,α) = QTa(θ,αB,α)

=

[
1− α

αB
+ (L− 1)δ

α

αB

]
QT c(θ)

−
∑

θ′∈Θ,θ′ �=θ

δ
α

αB
QT c(θ

′) +
α

αB
b. (31)

The global detection error probability at the FC can thus be
obtained via the formulation of (21), which according to (31)
becomes a function of Byzantine estimation error δ as shown
in Table III. Specifically, under the same setting as in Fig. 4,
we observe from Table III that an imperfect Byzantine estimate
does mitigate the deterioration effect of a Byzantine attack, and
setting α = α∗

blind can no longer blind the system; however, the
global detection error probability at the FC is still very close
to 1− 1

L = 1
2 . From the attacker viewpoint, a remedy could be

to raise α from α∗
blind ≈ 0.4057 to, e.g., 0.5, in which case a

Byzantine estimation error δ of 0.1 can still degrade the global
detection error down to a random-guess performance.

We remark at the end that α∗
blind obtained in Fig. 4 seems to

hint that the attacker needs to compromise at least half of the
sensors because the smallest integer larger than N × α∗

blind =
10× α∗

blind is 5. However, such a high need for the fraction
of compromised sensors is due to the strong requirement of
blinding the system. When targeting only a certain degree of
deterioration of global detection performance instead of blinding
the system, an attacker can still adopt the statistical attacking
scheme proposed in Subsection III-C, and expect that a fairly
serious deterioration can be reached with anα smaller thanα∗

blind.
This expectation can be supported by Fig. 4, where the curves
of global detection error probabilities at the FC follow closely
a direct trace connecting the point at α = 0 and the point with
coordinate (α, Pe) = (α∗

blind,
1
2 ). Since α∗

blind is the minimum
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sensor compromising probability attainable by any statistical
attacking scheme that is required to result in Pe =

1
2 , it may be

justified to state that the global detection error probability at the
FC is close to a certain worst value by our attacking scheme at
any α between 0 and α∗

blind.

V. CONCLUSION

An optimal Byzantine attack policy for WSNs with M -ary
data from a finite of number of local sensors was derived under
the assumption that an attacker can acquire the statistics of local
outputs. The closed-form expression of the minimum sensor
compromising probability α∗

blind to achieve the perfect blindness
of global detection was obtained. While most of the early works
on robustness of distributed detection focused on the binary
hypothesis testing problem due to analytical convenience, our
results can be well applied for an arbitrary finite number of hy-
potheses. In addition, we have generalized the notion of system
blindness, which simply requires the independence between the
receptions from sensors and the POI; as a result of this general-
ization, the optimal Byzantine attack policy we proposed works
for any noisy link as long as the transition matrix of the noisy
link Q admits an inverse. In situations when Q is not invertible,
the minimum sensor compromising probability is often smaller
than the α∗

blind from Theorem 2. In particular, when M = 2, the
minimum sensor compromising probability is reduced to zero
for any non-invertible Q. For M > 2, however, the minimum
sensor compromising probability subject to a non-invertible Q
shall become a function of Q and may not exhibit a simple
expression as that in Theorem 2, and its determination could be
an interesting theoretical challenge.

APPENDIX A
PROOF OF THEOREM 1

The theorem is actually intended to prove

αblind(d) = max
θ∈Θ:M(θ)

2 �=∅
e
(θ)
k(θ)

where e
(θ)
m and k(θ) are respectively defined in (8) and (11).

Note that it is reasonable to assume that

M(θ)
2 �= ∅ for at least one θ ∈ Θ; (32)

otherwise, we have c(θ) = d for every θ ∈ Θ, which implies
trivially αblind(d) = 0.

With the validity of (32), the theorem can be proved in two
steps. The first step shows that every α satisfying c(θ) − d =

α
(
I − (P (θ))T

)
c(θ) for some P (θ) must be no less than e

(θ)
k(θ)

if M(θ)
2 �= ∅. The second step gives the specific choice of P (θ)∗

that verifies the achievability of the claimed αblind(d).
Step 1. αblind(d) ≥ e

(θ)
k(θ) for every θ ∈ Θ with M(θ)

2 �= ∅: We
know from (7) that

c
(θ)
k(θ) − dk(θ) = α

(
c
(θ)
k(θ) −

∑
m∈M

p
(θ)
m,k(θ)c

(θ)
m

)

= α

⎡
⎣
(
1− p

(θ)
k(θ),k(θ)

)
c
(θ)
k(θ) −

∑
m∈M\{k(θ)}

p
(θ)
m,k(θ)c

(θ)
m

⎤
⎦ .

(33)

This implies

α ≥ α
(
1− p

(θ)
k(θ),k(θ)

)

= 1− dk(θ)

c
(θ)
k(θ)

+ α
∑

m∈M\{k(θ)}
p
(θ)
m,k(θ)

c
(θ)
m

c
(θ)
k(θ)︸ ︷︷ ︸

≥0

(34)

≥ 1− dk(θ)

c
(θ)
k(θ)

= e
(θ)
k(θ), (35)

where the equality in (34) follows from (33).
Step 2. αblind(d) = max

θ∈Θ:M(θ)
2 �=∅ e

(θ)
k(θ): We now show that

the specified P (θ)∗ validates (7) with α = αblind(d).
WhenM(θ)

2 is empty, we have c(θ) = d. Thus, taking P (θ)∗ =
I and α = αblind(d) trivially validates (7).

Next, subject to that M(θ)
2 is non-empty, we re-write (7) as

α
(
P (θ)

)T
c(θ) = αc(θ) + d− c(θ), which is equivalent to

p
(θ)
j,j c

(θ)
j +

M∑
�=1,� �=j

p
(θ)
�,j c

(θ)
� = c

(θ)
j +

dj − c
(θ)
j

α

for j ∈ M; here, the action of dividing by α is justified as we
have already proved in (35) that α ≥ e

(θ)
k(θ), and e

(θ)
k(θ) > 0 for

non-empty M(θ)
2 .

We thus take α = αblind(d) and P (θ) = P (θ)∗ into the above
equation and obtain:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p
(θ)∗
j,j c

(θ)
j +

∑
�∈M(θ)

1 \{j} p
(θ)∗
�,j c

(θ)
� +

∑
�∈M(θ)

2
p
(θ)∗
�,j c

(θ)
�

= c
(θ)
j +

dj−c
(θ)
j

αblind(d)
for j ∈ M(θ)

1 ;

p
(θ)∗
j,j +

∑
�∈M\{j} p

(θ)∗
�,j

c
(θ)
�

c
(θ)
j

= 1− e
(θ)
j

αblind(d)
for j ∈ M(θ)

2 .

(36)

It remains to show that the elements of P (θ)∗ satisfy the two sets
of equations in (36).

From (10), we obtain that
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p
(θ)∗
j,j = 1− e

(θ)
j

αblind(d)
for j ∈ M(θ)

2 ;

p
(θ)∗
�,j = 0 for � ∈ M and

j ∈ M(θ)
2 and � �= j,

which immediately validates the second set of equations in (36).
The first set of equations in (36) can be confirmed by noting that:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p
(θ)∗
j,j = 1 for j ∈ M(θ)

1 ;

p
(θ)∗
�,j = 0 for � ∈ M(θ)

1 and

j ∈ M(θ)
1 and � �= j;

∑
�∈M(θ)

2

p
(θ)∗
�,j c

(θ)
� =

dj − c
(θ)
j

αblind(d)
for j ∈ M(θ)

1 .
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APPENDIX B
PROOF OF THEOREM 2

For notational convenience, we define

t(d) := 1− αblind(d) = min
θ∈Θ

min
m∈M:c

(θ)
m >0

{
dm

c
(θ)
m

}
,

and

t∗ :=
1∑M

m=1 maxθ∈Θ c
(θ)
m

=
1∑

θ∈Θ
∑

m∈A(θ) c
(θ)
m

,

where {A(θ)}θ∈Θ are L disjoint partitions of M (possibly with

some empty partitions) such that c(θ)m = maxθ′∈Θ c
(θ′)
m for m ∈

A(θ).
The theorem can be proved in two steps. We first show that

t(d) ≤ t∗ for all d ∈ D. We next provide a specific d∗ that
validates t(d∗) = t∗.

We now prove the first step by contradiction. Suppose that
there exists a d◦ ∈ D satisfying t(d◦) > t∗. Then, for every θ ∈
Θ and for every m ∈ M with c

(θ)
m > 0,

d◦m
c
(θ)
m

> t∗ =
1∑

θ∈Θ
∑

m∈M(θ) c
(θ)
m

.

Equivalently, for every θ ∈ Θ and for every m ∈ M with
c
(θ)
m > 0,

d◦m >
c
(θ)
m∑

θ∈Θ
∑

m∈A(θ) c
(θ)
m

. (37)

Noting that c(θ)m = maxθ′∈Θ c
(θ′)
m > 0 for m ∈ A(θ) according

to the assumption in (1), we derive from (37) that

M∑
m=1

d◦m =
∑
θ∈Θ

∑
m∈A(θ)

d◦m

>
∑
θ∈Θ

∑
m∈A(θ)

c
(θ)
m∑

θ∈Θ
∑

�∈A(θ) c
(θ)
�

=

∑
θ∈Θ

∑
m∈A(θ) c

(θ)
m∑

θ∈Θ
∑

�∈A(θ) c
(θ)
�

= 1,

which contradicts the fact that d◦ is a pmf in D. This finishes
the proof of the first step.

It remains to provide a d∗ such that t(d∗) = t∗. Define

d∗m := c(θ)m · t∗ for θ ∈ Θ and m ∈ A(θ)

and verify that

M∑
m=1

d∗m =
∑
θ∈Θ

∑
m∈A(θ)

d∗m = t∗
∑
θ∈Θ

∑
m∈A(θ)

c(θ)m = 1.

Then,

t(d∗) = min
θ∈Θ

min
m∈M:c

(θ)
m >0

{
d∗m
c
(θ)
m

}

= min
θ∈Θ

min

{
min

m∈A(θ)

{
d∗m
c
(θ)
m

}
, min
m �∈A(θ)

{
d∗m
c
(θ)
m

}}

= min
θ∈Θ

min

{
t∗, min

m∈⋃θ′∈Θ:θ′ �=θ A(θ′)

{
c
(θ′)
m

c
(θ)
m

t∗
}}

= min
θ∈Θ

t∗ = t∗ (38)

where (38) holds since for m ∈ A(θ′) and θ′ �= θ, c
(θ′)
m =

maxθ′′∈Θ c
(θ′′)
m ≥ c

(θ)
m . Thus, maxd∈D t(d) = t(d∗) = t∗.
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