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Lengthening and Extending Binary
Private Information Retrieval Codes

Hsuan-Yin Lin and Eirik Rosnes
Simula@UiB, N–5020 Bergen, Norway

(Emails: hsuan-yin.lin@ieee.org and eirikrosnes@simula.no)

Abstract—It was recently shown by Fazeli et al. that the storage
overhead of a traditional t-server private information retrieval
(PIR) protocol can be significantly reduced using the concept of
a t-server PIR code. In this work, we show that a family of t-
server PIR codes (with increasing dimensions and blocklengths)
can be constructed from an existing t-server PIR code through
lengthening by a single information symbol and code extension
by at most

⌈
t/2

⌉
code symbols. Furthermore, by extending a

code construction notion from Steiner systems by Fazeli et al.,
we obtain a specific family of t-server PIR codes. Based on
a code construction technique that lengthens and extends a t-
server PIR code simultaneously, a basic algorithm to find good
(i.e., small blocklength) t-server PIR codes is proposed. For the
special case of t = 5, we find provably optimal PIR codes for
code dimensions k ≤ 6, while for all 7 ≤ k ≤ 32 we find
codes of smaller blocklength than the best known codes from
the literature. Furthermore, in the case of t = 8, we also find
better codes for k = 5, 6, 11, 12. Numerical results show that
most of the best found 5-server PIR codes can be constructed
from the proposed family of codes connected to Steiner systems.

I. INTRODUCTION

Private information retrieval (PIR) has attracted significant
attention for well over a decade since its introduction by Chor
et al. in [1]. A formal PIR protocol allows to privately retrieve
a single file among the servers storing it without revealing
any information about the requested file to each individual
server. Traditional PIR protocols operate on a database of n
bits, which is replicated among several servers to achieve PIR.
Thus, the storage overhead of traditional PIR protocols is at
least 2, and the overall goal is to reduce the total upload and
download cost of the protocol.

PIR for distributed storage systems was first addressed in
[2]. For distributed storage systems the size of the requested
file is typically much larger than the number of files, and
thus the upload cost is much lower than the download cost.
Hence, only the download cost is considered, as opposed to
traditional PIR protocols. Recent work on PIR protocols for
distributed storage systems typically assumes that the storage
code is given, and then the PIR protocol is designed as a
second layer to the system [3], [4]. This is in contrast to the
work by Fazeli et al. in [5], where, in order to reduce the
storage overhead of traditional PIR protocols, the concept of
a t-server PIR code was proposed. A t-server PIR code is an
[n, k] linear code satisfying the so-called t-PIR property, i.e.,

This work was partially funded by the Research Council of Norway (grant
240985/F20).

for every information symbol, there exist t mutually disjoint
subsets of {1, 2, . . . , n} such that it can be recovered from the
code symbols indexed by any of these t subsets. By employing
an [n, k] t-server PIR code, they have shown that all known
t-server information-theoretic PIR protocols can be emulated
by a coded PIR protocol with storage overhead equal to n/k.

Finding good codes that operate efficiently with a small stor-
age overhead, i.e., designing a t-server PIR code with a small
blocklength for a given dimension, is an important research
challenge. In [5], an insightful series of t-server PIR code
constructions based on existing code construction techniques
were presented. In the recent work of [6], the authors found
that the so-called shortened projective Reed Muller (SPRM)
codes are good t-server PIR codes for t = 2` − 1 and 2`

where ` is a positive integer. For t = 3, 4, it was shown in [6]
that SPRM codes are indeed optimal in the sense of achieving
a lower bound on the blocklength of a t-server PIR code.

In this work, we will show that a t-server PIR code with
small blocklength can be constructed by lengthening and
extending an existing PIR code. Furthermore, we prove that
a certain family of codes associated with Steiner systems
possesses the t-PIR property. Since optimal codes for t ≤ 4 are
known (see [5], [6]), we mainly focus on the special case of
t = 5 (or, equivalently, t = 6) for which we show that provably
optimal PIR codes can be constructed from lengthening and
extending an existing PIR code for code dimensions k ≤ 6,
while for all 7 ≤ k ≤ 32 we find codes of smaller blocklength
than the best known codes from the literature. Moreover, we
also show that for certain values of k, SPRM codes are not
optimal for t = 8.

II. DEFINITIONS AND PRELIMINARIES

Throughout this paper, we will focus on binary codes only.
Component-wise addition of vectors from a vector space will
be written as normal addition, and as is customary in coding
theory, we denote row vectors by boldface italic Roman
letters, e.g., x. However, sometimes we will slightly abuse
this notational convention by using c to refer to a column
vector. Moreover, whether an all-zero vector 0 (or an all-one
vector 1) is a row vector or a column vector will become clear
from the context. The Hamming weight of a binary vector x
is denoted by wH(x) throughout the paper.

A. t-Server PIR Codes
Definition 1: Consider an [n, k] linear code C and its

corresponding generator matrix G ,
[
c1, . . . , cn

]
. This [n, k]
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code is said to be an [n, k; t] PIR code if for every i ∈ Nk ,
{1, 2, . . . , k}, there exist t mutually disjoint sets R(i)

h , h ∈ Nt,
such that

ei , (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0)T =
∑

j∈R(i)
h

cj , ∀ h ∈ Nt,

where superscript “T” denotes vector transposition. We also say
that such a code C (or G) has the t-PIR property. Moreover,
given a message symbol ui, i ∈ Nk, those mutually disjoint
sets R(i)

h , h ∈ Nt, are called the recovering sets for ui.
For given values of k and t, the minimum value of n for

which an [n, k; t] PIR code exists is of great interest. This
motivates us to look at a related parameter in conventional
coding theory: the length of the shortest binary linear code
with dimension k and minimum Hamming distance d. The
smallest blocklength of a linear code for fixed values of
(k, d) has been discussed extensively in the existing literature.
Note that our notation of an [n, k; t] PIR code should not
be confused with the usual three parameters notation of an
[n, k, d] linear code, where the third parameter d denotes the
minimum Hamming distance of the [n, k] code. We make the
following definitions.

Definition 2:

NP(k, t) , min{n : an [n, k; t] binary PIR code exists}.
N(k, d) , min{n : an [n, k, d] binary linear code exists}.

B. Bounds for t-Server PIR Codes

It is well-known that the minimum Hamming distance d of
a t-server PIR code must be at least t [7].

Proposition 1: If an [n, k; t] PIR code exists, then its
minimum Hamming distance d must satisfy d ≥ t.

Corollary 1: For given values of k and t, NP(k, t) is lower-
bounded by the smallest blocklength n such that an [n, k, t]
code exists, i.e., NP(k, t) ≥ N(k, t).

Proof: See the extended version [8].
In [6], a lower bound on the minimum blocklength NP(k, t)

for any systematic [n, k; t] PIR code was presented. As shown
in [9], the bound from [6] also holds for any binary [n, k; t]
PIR code. The lower bound from [6], denoted by LP(k, t), is

LP(k, t) , k +

⌈√
2k +

1

4
+

1

2

⌉
+ t− 3, t ≥ 3.

It can easily be verified that in general N(k, t) ≥ LP(k, t) for
small values of t > 4. In fact, we will show in Section V that
N(k, t) is a tighter lower bound on NP(k, t) than LP(k, t) for
t = 6.

Some useful upper and lower bounds on NP(k, t) were
provided by Fazeli et al. in [5]. Together with the constructions
introduced therein, the authors provided an upper bound table
on NP(k, t) for all values of k ≤ 32 and t ≤ 16. We briefly
summarize their results below.

Lemma 1 (Lemmas 13 and 14 in [5]):
(a) NP(k, t+ t′) ≤ NP(k, t) +NP(k, t

′),
(b) NP(k + k′, t) ≤ NP(k, t) +NP(k

′, t),

(c) NP(k, t) ≤ NP(k + 1, t)− 1,
(d) NP(k, t) ≤ NP(k, t+ 1)− 1, and
(e) if t is odd, then NP(k, t+ 1) = NP(k, t) + 1.

III. CODE CONSTRUCTIONS

In this section, we first present a code construction by
lengthening and extending a given PIR code, and then present
an extension of a code construction inspired by Steiner systems
proposed by Fazeli et al. in [5]. An earlier work constructing
PIR codes (and even stronger batch codes) for t = k based
on Steiner systems (and more general block designs) was
presented in [10].

A. Lengthening and Extending PIR Codes

In the following theorem, we will investigate an important
property of a PIR code with an arbitrary positive integer t.

Theorem 1: For any given t ∈ N , {1, 2, . . .}, we have

NP(k + 1, t) ≤ NP(k, t) +

⌈
t

2

⌉
.

Proof: See the extended version [8].
Theorem 1 is an improved version of part (b) of Lemma 1

for k′ = 1, while for k′ > 1, it is an improved version only if
k′
⌈
t
2

⌉
< NP(k

′, t). This theorem suggests that for a given even
value of t, a new t-server PIR code can always be generated
by adding one information symbol and appending at most t/2
code symbols to the original t-server PIR code.

Next, we will discuss a special family of systematic codes
that will help in the numerical search for good PIR codes with
small blocklength, especially when k is large.

B. Construction of PIR Codes Based on Steiner Systems

In [5], a systematic code construction based on Steiner
systems was proposed, in which the authors introduce a rep-
resentation method of systematic codes, and give a sufficient
(but not necessary) condition for constructing PIR codes.

Definition 3: Let Pk = {Pj}rj=1 be a collection of
subsets of Nk. A systematic [n = k + r, k] code C can
be represented by defining the codewords of C as x ,
(u1, . . . , uk, xk+1, . . . , xk+r), where u1, . . . , uk are the infor-
mation bits of the code and each redundancy bit xk+j is
defined as xk+j ,

∑
i∈Pj

ui, j ∈ Nr.
We denote the constructed code by C (Pk). Furthermore,

for the sake of notational convenience, we define J (i) ,
{
j ∈

Nr : i ∈ Pj
}

to be the set of indices j ∈ Nr such that i ∈ Pj .
The systematic generator matrix G of this code can be

written as G =
[
Ik|Pk×r

]
, where Ik is the k×k identity matrix

and the k × r redundancy matrix Pk×r = {pij}1≤i≤k, 1≤j≤r
is defined by

pij ,
{
1, if i ∈ Pj ,
0, otherwise.

Lemma 2 (Lemma 7 in [5]): Suppose that a collection Pk =
{Pj}rj=1 satisfies the following properties.

1) For all i ∈ Nk,
∣∣J (i)

∣∣ ≥ t− 1, and
2) for all j 6= j′ ∈ Nr,

∣∣Pj ∩ Pj′
∣∣ ≤ 1.
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Then, the corresponding systematic code C (Pk) is a t-server
PIR code.

The above lemma only leads to an absorbing upper bound
on the redundancy NP(k, t) − k for fixed t and sufficiently
large k, which shows that it is equal to O(

√
k). However, for

smaller values of the parameter k, whether or not this upper
bound is tight is still unknown. Moreover, in [5] a similar
PIR code construction based on constant-weight codes was
provided, where all rows of Pk×r have constant weight and a
given minimum Hamming distance.

It is known that the minimum Hamming distance d of a PIR
code must be larger than or equal to the desired parameter t
(see Proposition 1), and so are the row Hamming weights of
any generator matrix G for the code. Hence, it is reasonable
to change the sufficient condition of

∣∣J (i)
∣∣ ≥ t−1 in Lemma

2 to
∣∣J (i)

∣∣ = t− 1, ∀ i ∈ Nk.
Motivated by Steiner systems, we define a more elaborate

systematic code family as follows.
Definition 4: For any integer t ∈ N and a given collection

Pk = {Pj}rj=1 of subsets of Nk, we say that a systematic
code C (Pk) (or its corresponding generator matrix) has
property St if all of the following conditions are satisfied.

1) Pr = Nk,
2)
∣∣J (i)

∣∣ = t− 1 for all i ∈ Nk,
3)
∣∣Pj ∩ Pj′

∣∣ ≤ 1 for all j 6= j′ ∈ Nr−1, and
4) for any given m ∈ Nk, there exists a subset I(m) ⊆ Nk

with I(m)∩
(⋃

j∈J (m)\{r} Pj
)
= ∅ and a subset V(m) ⊆

Nr−1 with V(m) ∩ J (m) = ∅ such that

um +
∑

i∈I(m)

ui +
∑

j∈V(m)

∑

i∈Pj

ui =

k∑

i=1

ui.

Similarly to Lemma 2, a systematic code with property St
turns out to be an [n, k; t] PIR code.

Lemma 3: If a systematic code C (Pk) has property St,
then it is an [n = k + r, k; t] PIR code.

Proof: See the full version [8].
The following example illustrates the code design of

Lemma 3.
Example 1: For an [n, k] = [17, 8] systematic code, we

describe it in terms of P8 as follows:

P8 ,
{
P1 , {1, 2, 3},P2 , {1, 4, 6},P3 , {1, 5, 7},
P4 , {2, 4, 8},P5 , {2, 5, 6},P6 , {3, 4, 7},
P7 , {3, 5, 8},P8 , {6, 7, 8},P9 , N8

}
.

One can see that r = 9 and that the systematic code C (P8)
has property S5. Here, condition 4) can be verified by the
following observations (e.g., take m = 1, 8):

J (1) = {1, 2, 3, 9}, J (8) = {4, 7, 8, 9},
I(1) = {8}, I(8) = {1}, V(1) = V(8) = {5, 6},
N8 = {1} ∪ P5 ∪ P6 ∪ {8}.

Then, we can conclude that this code is a 5-server [17, 8] PIR
code. For example, the recovering sets for the first information
bit are determined by R(1)

1 = {1},
R(1)

2 = {m ∈ P1 : m 6= 1} ∪ {k + 1} = {2, 3, 9},

R(1)
3 = {m ∈ P2 : m 6= 1} ∪ {k + 2} = {4, 6, 10},
R(1)

4 = {m ∈ P3 : m 6= 1} ∪ {k + 3} = {5, 7, 11},
R(1)

5 = {8, k + 5, k + 6, k + r} = {8, 13, 14, 17}.
In fact, the idea behind Lemma 3 is to try to combine the

properties of Steiner systems and part (e) of Lemma 1, in such
a way that we can construct an [n+1, k; t+1] PIR code from
an [n, k; t] PIR code when t is even.

We also remark that a systematic [n, k; t] PIR code with
property St usually has different cardinalities of its recovering
sets (the so-called non-uniform information-symbol locality
property). For instance, for the code of Example 1, each
information symbol has 1 recovering set of cardinality 1,
3 recovering sets of cardinality 3, and 1 recovering set of
cardinality 4. This is also in alignment with [6], where
the presented PIR codes in general have recovering sets of
different cardinalities. In Section V, we will show that codes
having property S5 are good 5-server PIR codes with small
blocklength.

IV. SEARCHING FOR OPTIMAL PIR CODES

In this section, we present an algorithm to search for
good (i.e., small blocklength) PIR codes. Since optimal codes
for t ≤ 4 are already known for all code dimensions k,
we concentrate on t = 5. Because Theorem 1 implies that
we can construct a t-server PIR code by lengthening and
extension, hence, combined with the idea of lexicographic
code construction [11], Algorithm 1 is proposed to find a
sequence of good systematic PIR codes for t = 5.1

Initially, we choose the best known [n, k; 5] code with a
systematic generator matrix in which all rows have weight 5.
Note that for small values of n and k, such a code is not too
difficult to find. As an example, the generator matrix G of a
systematic [8, 2; 5] code in which all rows have weight 5 is

G =

[
1 0 1 1 1 0 0 1
0 1 1 0 0 1 1 1

]
. (1)

The outer while loop of Algorithm 1 increases a counter
(denoted by i) from 1 to

(
r+w
4

)
(the counter runs over all

possible length-(r + w) binary vectors of weight 4). The
function LengtheningExtending(Gbest, z) in Line 6 of
Algorithm 1 is defined by

G̃ ,
[
Ikbest 0 Pkbest×(r+w)

0 1 z

]
,

kbest + 1 r + w

where Gbest =
[
Ikbest |Pkbest×(r+w)

]
and wH(z) = 4.2 Note that

if w = 2, it follows from the proof of Theorem 1 in [8] that
kbest ≥ k + 1; explaining why we choose 1 ≤ w ≤ 2 from
the beginning. Furthermore, notice that for w = 1, sometimes

1In general, this algorithm can be applied for any t. The main reason why
we focus on small values of t is that when t is increasing, the complexity to
determine whether a code has the t-PIR property is also increasing.

2Note that the definition of G̃ guarantees that Gbest is always in systematic
form in each iteration.
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Algorithm 1: Searching for optimal 5-server PIR codes
Input : A systematic constant row-weight-5 generator

matrix G = [Ik|Pk×r] for an [n, k; 5] code, and a
given w ∈ N2.

Output: A systematic constant row-weight-5 generator
matrix Gbest for an [nbest, kbest; 5] code, where
kbest ≥ k is the largest possible code dimension
found and nbest = kbest + r + w.

1 Gbest ← [Ik|Pk×r|Ok×w], kbest ← k
2 /* Ok×w is a k × w all-zero matrix */
3 i← 1
4 z ← the row vector (1, 1, 1, 1, 0, . . . , 0) of length r + w
5 while i ≤

(
r+w
4

)
do

6 G̃← LengtheningExtending(Gbest, z)
7 d̃← minimum Hamming distance of G̃
8 /* we simply say a code G̃ is the set of all rows of G̃ */
9 if d̃ ≥ 6 then

10 if G̃ has the 5-PIR property then
11 Gbest ← G̃, kbest ← kbest + 1
12 else
13 return (Gbest, kbest)
14 end
15 end
16 i← i+ 1, z ← Lexical(z)
17 end
18 if kbest = k then
19 Gbest ← G
20 end
21 return (Gbest, kbest)

the algorithm only results in the original input code. We also
verify whether d̃ ≥ 6 or not in Line 9 of Algorithm 1. This is
to ensure that the resulting code generated by G̃ can potentially
satisfy Proposition 1.3 Finally, given a vector z, Lexical(z)
generates the next lexicographical constant-weight z of length
r + w, e.g., Lexical(z) = (1, 1, 1, 0, 1, 0, . . . , 0) for z =
(1, 1, 1, 1, 0, . . . , 0).

We also remark that the resulting kbest from Algorithm 1
strongly depends on the selected G = [Ik|Pk×r] and the
given w in the input. It is difficult to predict whether the
corresponding blocklength nbest is good or not. For example,
given the systematic [n = k + r, k; t] = [8, 2; 5] code defined
in (1) and w = 1, the output from Algorithm 1 is an
[nbest, kbest; 5] = [11, 4; 5] code without property S5, while for
w = 2, Algorithm 1 results in an [nbest, kbest; 5] = [13, 5; 5]
code with property S5 (see Section V that follows). Now, for
code dimension k = 4, the [11, 4; 5] code is better than the
[12, 4; 5] code obtained by shortening the optimal [13, 5; 5]
code. Hence, for a fixed code dimension k, to find a good 5-
server PIR code with small blocklength, we have to compare
all the resulting [n, k; 5] codes found by Algorithm 1.

3Since the construction guarantees that all rows have equal Hamming
weights, the Hamming distance between any pair of rows is even, i.e., the
necessary condition d̃ ≥ 5 is equivalent to d̃ ≥ 6.

In general, the complexity of exhaustively examining the
t-PIR property for a given code becomes infeasible for large
n and k, even for t = 5. However, according to our numerical
results, for small code dimensions k, an optimal 5-server
PIR code often has property S5. Therefore, we investigate
a sequence of good PIR codes with respect to property S5.
In fact, a sequence of good codes with small blocklength
can always be generated by lengthening by one information
symbol and extending at most 2 coordinates from a smaller-
sized code with property S5, as shown in the theorem below.

Theorem 2: For any given values of n and k, if a systematic
[n, k] code has property S5, then there must exist a systematic
[n+ 3, k + 1] code that also has property S5.

Proof: See the details in the extended version [8].
Based on Theorem 2, we can slightly modify Algorithm 1

to investigate 5-server PIR codes with property S5. First,
we replace the input generator matrix by a generator ma-
trix G = [Ik|Pk×(r−1)|1] with property S5, and modify the
starting Gbest to [Ik|Pk×(r−1)|Ok×w|1] in Line 1 of Algo-
rithm 1. The function LengtheningExtending(Gbest, z)
for Gbest =

[
Ikbest |Pkbest×(r+w−1)|1

]
in Line 6 of Algorithm 1

is accordingly re-defined as

G̃ ,
[
Ikbest 0 Pkbest×(r+w−1) 1

0 1 z 1

]
,

kbest + 1 r + w − 1

where wH(z) = 5 − 2 = 3. Notice that the outer while loop
counter now should increase from 1 to

(
r+w−1

3

)
, and the initial

z in Line 4 should be replaced by the length-(r + w − 1)
vector z = (1, 1, 1, 0, . . . , 0). In fact, there is no need to
modify Line 9 of Algorithm 1, since the resulting G̃ will again
satisfy conditions 1)–3) of Definition 4.4 As a result, after the
modifications to Algorithm 1 outlined above, and if Line 10 of
Algorithm 1 is replaced by the verification of property S5 for
G̃, we are able to find good 5-server PIR codes with property
S5 for large code dimensions k ≥ 16 (see Section V below).
From Theorem 2 it follows that if w = 2, kbest ≥ k + 1.

V. NUMERICAL RESULTS

In this section, upper bounds on NP(k, t) for 1 ≤ k ≤ 32
and t = 4, 6, 8 are summarized in Table I. In particular, for
t = 6, we also present the numerical results obtained using the
search algorithm from Section IV. Entries for which strictly
better codes are found than in the current literature are marked
in bold. In comparison with the obtained improved upper
bound, a lower bound on NP(k, 6) is also given. For t = 4, the
SPRM codes provided in [6] are optimal. More specifically,
the blocklength is equal to the lower bound LP(k, 4).

In order to show how good our constructed 6-server PIR
codes are, we also list the best (smallest) known blocklength

4Note that the construction of G̃ will make all the row-weights of G̃ equal to
5 and the last column equal to the all-one vector (i.e., conditions 1) and 2) of
Definition 4 are satisfied). In order to satisfy condition 3) of Definition 4, the
minimum Hamming distance of G̃ must be larger than or equal to 2·(5−2) =
6, since any two row vectors in G̃ must have a common 1 in at most two
coordinates.
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TABLE I
BEST KNOWN BOUNDS ON NP(k, t) FOR SMALL VALUES OF k AND EVEN
t = 4, 6, 8. IN THE CASE OF t = 6, nB DENOTES THE BEST FOUND

BLOCKLENGTH BASED ON OUR PROPOSED SEARCH ALGORITHM, AND nU
IS DEFINED IN (2). STARRED VALUES (OR COLUMNS) CAN BE PROVED TO

BE OPTIMAL, WHILE BOLD ENTRIES ARE NEW RESULTS.
k\t 4∗ [6] 6 8 [6]

N(k, t) [12] nB nU

1 4 − 6∗ − 8∗

2 6 − 9∗ − 12∗

3 7 − 11∗ − 14∗

4 9 − 12∗ � − 15∗

5 10 14 14∗ 13! 19

6 11 15 15∗ � 14! 21

7 13 16 17 15! 22
8 14 17 18 20 24
9 15 18 20 23 25
10 16 20 21 24 26
11 18 21 22 25 30
12 19 22 23 26 32
13 20 23 25� 27 33
14 21 24 27� 29 35
15 22 26 28� 34 36
16 24 27 31 35 37
17 25 28 32 37 39
18 26 29 33 38 40
19 27 30 35 39 41
20 28 31 36 40 42
21 29 32 37 42 46
22 31 33 39 46 48
23 32 34 40 47 49
24 33 36 41 49 51
25 34 37 42 50 52
26 35 38 43 51 53
27 36 39 44 53 55
28 37 40 46 54 56
29 39 41 47 55 57
30 40 42 48 56 58
31 41 43 50 58 60
32 42 44 52 59 61

for t = 8 (the smallest blocklength of the SPRM codes from
[6]). They will result in an improved upper bound for t = 6,
since by part (d) of Lemma 1, NP(k, 6) ≤ NP(k, 8)−2. Hence,

nU , min{n1, n2 − 2} (2)

is the best known upper bound for t = 6, where n1 denotes the
best known blocklength provided in [5], and n2 is the smallest
blocklength of SPRM codes for t = 8 provided in [6].

Note again that, according to part (e) of Lemma 1 and
in order to compare our findings with [5, Table III] and [6,
Table II], only even values of t are interesting. Here, for t = 6
the blocklengths nB of Table I are obtained by adding one to
the blocklengths of our best found 5-server PIR codes. We
make the following remarks to Table I.

1) The superscript “∗” indicates that the corresponding
blocklength can be shown to be optimal. We use the lower
bound N(k, t), whose value can be obtained from [12],
since LP(k, 6) = LP(k, 4) + 2 ≤ N(k, 6) and no tighter
lower bound for t = 6 is known.

2) The superscript “�” indicates that the best found system-
atic [n, k; 5] code has a constant-weight generator matrix
of row-weight 5 and without property S5.

3) The superscript “!” indicates that the corresponding
blocklength is impossible, since it is smaller than N(k, t)
(a contradiction to Corollary 1). We believe that the value
of nU = 15 for (k, t) = (7, 6) in [5, Table III] was
obtained from [5, Thm. 9] and should have corresponded
to (k, t) = (6, 6) due to a misprint in [13, p. 289] in the
redundancy of type-1 doubly transitive invariant codes.
We believe this explains the contradictions.

4) The superscript “[·]” indicates the reference number.
We also remark that for t = 8, using our algorithm we are

able to find better PIR codes for certain values of k: we have
obtained nB = 18, 20, 29, 31 for k = 5, 6, 11, 12, respectively.
This indicates that the SPRM codes are not optimal for t = 8.

VI. CONCLUSION

In this paper, we presented a construction of a t-server
PIR code by lengthening and extension of an existing PIR
code. We also presented an extension of a code construction
inspired by Steiner systems proposed by Fazeli et al., which
was used in the proposed algorithm to search for good (i.e.,
small blocklength) 5-server PIR codes. For code dimensions
k ≤ 6, provably optimal PIR codes were found, while for all
7 ≤ k ≤ 32, codes of smaller blocklength than the best known
codes from the literature were found and presented. Moreover,
better 8-server PIR codes were also found for k = 5, 6, 11, 12.
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