

Generative Adversarial User Privacy in Lossy Single-Server Information Retrieval

Chung-Wei Weng^{*†}, Yauhen Yakimenka^{*}, Hsuan-Yin Lin^{*}, Eirik Rosnes^{*}, and Jörg Kliewer[‡] *Simula UiB, Bergen, Norway [†]University of Bergen, Norway [‡]New Jersey Institute of Technology, USA

Single-Server Information Retrieval (Lossy, Weakly-Private)

Private information retrieval (PIR) problem: retrieve the *M*-th file X^(M) from a database X^[N] = {X⁽¹⁾,...,X^(N)}, but keep the index *M* secret

$$\begin{split} & \min_{f_{\mathbf{Q}}} \max_{f_{\hat{\mathbf{M}}}} \quad \mathsf{E}_{M,\boldsymbol{Q}} \Big[f_{\mathrm{Loss}}(M, \hat{M}) \Big], \\ & \text{subject to:} \quad \mathsf{E}_{M,\boldsymbol{Q}} \left[d(\boldsymbol{X}^{(M)}, \hat{\boldsymbol{X}}) \right] \leq \mathrm{D}, \quad \mathrm{R}(f_{\mathbf{Q}}, f_{\mathbf{A}}) \leq \mathrm{R} \end{split}$$

Experiments

Figure: Leakage versus per-symbol squared error distortion for both the data-driven approach and the schemes from theoretical approximation. (a) Synthetic Gaussian dataset. (b) MNIST. (c) CIFAR-10

Motivation

- ▶ Make PIR more practical: improved download cost (or rate) by relaxing conditions:
 - \blacktriangleright relaxed perfect privacy \rightarrow leaky (or weakly-private) protocol
 - \blacktriangleright relaxed perfect reconstruction \rightarrow distorted reconstruction

Distortion

Limitation: unknown statistical properties of real-world datasets

Contribution

- Study the download rate, distortion, and user privacy leakage trade-off under a generative adversarial network (GAN) based approach for a single server
- Evaluate the performance for synthetic (Gaussian) and real-world (MNIST, CIFAR-10) datasets
- Compare the approaches:
 - data-driven: GAN-based
- theoretical approximation (benchmark): lossy compression of a random subset of the files in the database
- Shannon's asymptotic limit of rate-distortion (requires knowledge of the database's probability distribution)

Explainable Results

 \blacktriangleright Analyze (statistical) dependence of file indices used to produce an answer ${\boldsymbol A}$ for a requested file index M

Figure: Heat map with CIFAR-10 for leakage L=0.30, distortion D=0.064, and rate $R=1\!/\!4$

Explainable behavior: trained f_A splits files into subsets and form the answer A similarly for each file in the subset (in the example above, randomized queries for files X⁽¹⁾, X⁽⁶⁾, and X⁽¹⁰⁾ are processed in the same manner, cf. the rows 1, 6, and 10 in the heat map)

Figure: MNIST reconstruction example, $\mathrm{R}=1\!/\!_2$ bits per pixel